Previous |  Up |  Next

Article

References:
[1] J. Bair: Structure asymptotique et propriétés de séparation en geometrie convexe. Research Report, Université de Liège, 1984.
[2] A. Cambini, Martein: On the Fenchel-like and Lagrangian Duality in Fractional Programming. Research Report, University di Pisa, 1985.
[3] Tran Quoc Chien: Duality in vector optimization, I: abstract duality scheme. Kybernetika 20 (1984), 4, 304-313. MR 0768510 | Zbl 0556.49010
[4] Tran Quoc Chien: Duality in vector optimization, II: vector quasiconcave programming. Kybernetika 20 (1984), 5, 386-404. MR 0776328 | Zbl 0575.49006
[5] Tran Quoc Chien: Duality in vector optimization, III: vector partially quasiconcave programming and vector fractional programming. Kybernetika 20 (1984), 6, 458-472. MR 0777980 | Zbl 0575.49007
[6] Tran Quoc Chien: Nondifferentiable and quasidifferentiable duality in vector optimization theory. Kybernetika 21 (1985), 4, 298-312. MR 0815617 | Zbl 0579.90091
[7] Tran Quoc Chien: Duality Theory in Vector Optimization. Ph. D. Thesis, Charles University, Prague 1985.
[8] G. Grätzen: Lattice Theory. W. H. Freedman and Company, San Francisco 1971.
[9] R. B. Holmes: Geometrical Functional Analysis and Its Applications. Springer-Verlag, New York 1975. MR 0410335
[10] S. Schaible: Duality in fractional programming: a unified approach. Oper. Res. 24 (1976), 3, 452-461. MR 0411644 | Zbl 0348.90120
[11] S. Schaible: Fractional programming I: duality. Management Sci. 22 (1976), 8, 859-867. MR 0421679 | Zbl 0338.90050
Partner of
EuDML logo