Previous |  Up |  Next

Article

Title: Fuzzy information and combinatorial inequalities (English)
Author: Ramer, Arthur
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 28
Issue: 7
Year: 1992
Pages: 4-11
.
Category: math
.
MSC: 04A72
MSC: 94A17
MSC: 94D05
idZBL: Zbl 0863.94041
idMR: MR1226042
.
Date available: 2009-09-24T18:35:17Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124198
.
Reference: [1] D. Dubois, H. Prade: Possibility Theory.Plenum Press, New York 1988. Zbl 0703.68004, MR 1104217
Reference: [2] D. Dubois, H. Prade: Properties of measures of information in evidence and possibility theories.Fuzzy Sets Systems 21, (1987), 161 - 182. Zbl 0633.94009, MR 0912539
Reference: [3] M. Higashi, G. Klir: On the notion of distance representing information closeness.Internat. J. General Systems 9 (1983), 103 - 115. Zbl 0498.94006, MR 0705715
Reference: [4] M. Higashi, G.Klir: Measures of uncertainty and information based on possibility distributions.Internat. J. General Systems 8 (1982), 43 - 58. Zbl 0497.94008, MR 0696122
Reference: [5] G. Hardy J. Littlewood, G. Polya: Inequalities.Cambridge University Press, Cambridge 1934.
Reference: [6] G. Klir: A principle of uncertainty and information invariance.Internat. J. General Systems 11 (1990), 249 - 276 . Zbl 0703.94026
Reference: [7] G. Klir, M. Mariano: On the uniqueness of possibilistic measure of uncertainty and information.Fuzzy Sets Systems 2 (1987), 197 - 220. Zbl 0632.94039, MR 0912541
Reference: [8] A. Ramer: Structure of possibilistic information metrics and distances.Internat. J. General Systems 17(1990), 21 - 32, and 18 (1990), 1 - 10. Zbl 0703.94002
Reference: [9] A. Ramer: Certain Inequalities Related to Rearrangements.Technical Report OU-PPI-TR-89-01, University of Oklahoma, Norman, OK 1989 (submitted to Eur. J. Combinatorics, 1991.)
Reference: [10] A. Ramer, L. Lander: Classification of possibilistic uncertainty and information functions.Fuzzy Sets Systems 24 (1987), 221 - 230. Zbl 0637.94027, MR 0912542
Reference: [11] G. Shafer: A Mathematical Theory of Evidence.Princeton University Press, Princeton 1976. Zbl 0359.62002, MR 0464340
.

Files

Files Size Format View
Kybernetika_28-1992-7_1.pdf 562.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo