Previous |  Up |  Next

Article

References:
[1] M. Al-Baali R. Fletcher: Variational methods for nonlinear least squares. J. Optim. Theory Appl. 36 (1985), 405-421.
[2] J. E. Dennis D. M. Gay R. E. Welsch: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software 7 (1981), 348-368.
[3] J. E. Dennis H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Values. Research Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
[4] R. Fletcher: A Modified Marquardt Subroutine for Nonlinear Least Squares. Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971.
[5] R. Fletcher C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371-389. MR 0968531 | Zbl 0648.65051
[6] P. E. Gill W. Murray: Newton type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 311-350. MR 0356503
[7] M. D. Hebden: An Algorithm for Minimization Using Exact Second Derivatives. Research Report No.TP515, Theoretical Physics Division, A.E.R.E. Harwell 1973.
[8] K. Levenberg: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944), 164-168. MR 0010666
[9] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika 26 (1990), 415-431. MR 1079679
[10] D. W. Marquardt: An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11 (1963), 431-441. MR 0153071
[11] J. Militký: Mathematical Models Building. VI. Mineo, Technical House, Ostrava 1989.
[12] J. Militký O. Šenkýř L. Rudišar: Comparison of statistical software for nonlinear regression on IBM PC. In: COMPSTAT 90, Short communications, 1990, pp. 49-50.
[13] J. J. Moré: The Levenberg-Marquardt algorithm. Implementation and theory. In: Numerical Analysis (G. A. Watson ed.), Springer Verlag, Berlin 1978. MR 0483445
[14] J. J. Moré B. S. Garbow K. E. Hillström: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981) 17-41. MR 0607350
[15] J. J. Moré D. C. Sorensen: Computing a trust region step. SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. MR 0723110
[16] M. J. D. Powell: A new algorithm for unconstrained optimization. In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London 1970. MR 0272162 | Zbl 0228.90043
[17] R. B. Schnabel E. Eskow: A new Choleski factorization. SIAM J. Sci. Statist. Comput. 11 (1990), 1136-1158. MR 1068501
[18] G. A. Shultz R. B. Schnabel R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985) 47-67. MR 0772882
Partner of
EuDML logo