Previous |  Up |  Next

Article

References:
[1] B. D. O. Anderson, E. I. Jury: Generalized Bezoutian and Silvester matrices in multivariable linear control. IEEE Trans. Automat. Control AC-21 (1976), 551-556. MR 0444175
[2] T. M. Bakri: The Bezoutian, the Hankel matrix, output feedback and system eigenstructure. Internat. J. Control 50 (1989), 2075-2084. MR 1032449 | Zbl 0686.93040
[3] C. Coll R. Bru V. Hernández, E. Sánchez: Discrete-time periodic realizations in the frequency domain. Linear Algebra Appl. 203-204 (1994), 301-326. MR 1275515
[4] I. Gohberg M. A. Kaashoek, L. Lerer: Minimality and realization of discrete time-varying systems. Oper. Theory: Adv. Appl. 56 (1992), 261-296. MR 1173922
[5] I. Gohberg, T. Shalom: On Bezoutians of nonsquare matrix polynomials and inversion of matrices with nonsquare blocks. Linear Algebra Appl. 137-138 (1990), 249-323. MR 1067680 | Zbl 0706.15003
[6] O. M. Grasselli, S. Longhi: Zeros and poles of linear periodic multivariable discrete-time systems. Circuits Systems Signal Process 7 (1988), 3, 361-380. MR 0962108 | Zbl 0662.93015
[7] U. Helmke, P. A. Fuhrmann: Bezoutians. Linear Algebra Appl. 122-124 (1989), 1039-1097. MR 1020019 | Zbl 0679.93009
[8] L. Lerer, M. Tismenestsky: Generalized Bezoutian and matrix equations. Linear Algebra Appl. 99 (1988), 123-160. MR 0925154
[9] E. Sánchez V. Hernández, R. Bru: Minimal realizations for discrete-time linear periodic systems. Linear Algebra Appl. 162-164 (1992), 685-708. MR 1148426
[10] H. K. Wimmer: Bezoutians of polynomial matrices and their generalized inverse. Linear Algebra Appl. 122-124 (1989), 475-487. MR 1019998
Partner of
EuDML logo