Previous |  Up |  Next

Article

References:
[1] D. F. Delchamps: Global structure of families of multivariable linear systems with an application to identification. Math. Systems Theory 18 (1985), 329-380. MR 0818420
[2] S. Amari: Differential geometry of a parametric family of invertible linear systems -- Riemannian metric, dual affine connections, and divergence. Math. Systems Theory 20 (1987), 53-83. MR 0901894 | Zbl 0632.93017
[3] P. S. Krishnaprasad: Symplectic mechanics and rational functions. Ricerche Automat. 10 (1979), 2, 107-135. MR 0614258
[4] A. D. C. Youla H. A. Jabr, J. J. Bongiorno: Modern Wiener-Hopf design of optimal controllers. Part II -- the multivariable case. IEEE Trans. Automat. Control 21 (1976), 319-338. MR 0446637
[5] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979. MR 0573447
[6] A. Ohara, T. Kitamori: Geometric structures of stable state feedback systems. In: Proc. of 29th IEEE C.D.C. 1990, pp. 2494-2490, and IEEE Trans. Automat. Control 38 (1993), 10, 1579-1583. MR 1242914
[7] A. Ohara, S. Amari: Differential geometric structures of stable state feedback systems with dual connections. In: Proc. 2nd IFAC Workshop on System Structure and Control 1992, pp. 176-179.
[8] S. Amari: Differential-Geometrical Methods in Statistics. Springer-Verlag, Berlin 1985. MR 0788689 | Zbl 0559.62001
[9] A. Ohara S. Nakazumi, N. Suda: Relations between a parametrization of stabilizing state feedback gains and eigenvalue locations. Systems Control Lett. 16 (1991), 261-266. MR 1102211
[10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry II. J. Wiley, New York 1969.
[11] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press, New York 1962. MR 0145455 | Zbl 0111.18101
[12] M. Takeuchi: Lie Groups II. Iwanami, Tokyo 1978 (in Japanese). MR 0839859
Partner of
EuDML logo