Previous |  Up |  Next

Article

References:
[1] M. J. Denham: A necessary and sufficient condition for decoupling by output feedback. IEEE Trans. Automat. Control AC-18 (1973), 5, 535-537. MR 0452892 | Zbl 0268.93015
[2] P. L. Falb W.A. Wolovich: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 6, 651 - 659.
[3] D. F. Filev: State-Space Approach to Synthesis of Autonomous Multi Input-Multi Output Systems. (in Czech). Ph. D. Dissertation, Czech Technical University, Prague 1979.
[4] E. G. Gilbert: The decoupling of multivariable systems by state feedback. SIAM J. Control 7 (1969), 1, 50-63. MR 0260443 | Zbl 0175.10301
[5] J. W. Howze: Necessary and sufficient conditions for decoupling using output feedback. IEEE Trans. Automat. Control AC-18 (1973), 1, 44-46. MR 0434564 | Zbl 0263.93032
[6] A. G. J. MacFarlane N. Karcanias: Relationships between state space and frequency-response concepts. Proc. 7-th IFAC Congres, Helsinki 1978.
[7] A. S. Morse W. M. Wonham: Decoupling and pole assignment by dynamic compensation. SIAM J. Control 8 (1970), 3, 317-337. MR 0272434
[8] L. M. Silverman: Inversion of multivariable linear systems. IEEE Trans. Automat. Control AC-14 (1969), 270-276. MR 0267927
[9] L. M. Silverman H. J. Payne: Input-output structure of linear systems with application to the decoupling problem. SIAM J. Control 9 (1971), 2, 199-233. MR 0305869
[10] W. M. Wonham A. S. Morse: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1, 1 - 18. MR 0270771
[11] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, Berlin-Heidelberg-New York 1974. MR 0378912 | Zbl 0314.93007
Partner of
EuDML logo