Previous |  Up |  Next

Article

References:
[1] Khintchine A.: Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92 (1924), 115-125. DOI 10.1007/BF01448437 | MR 1512207
[2] Mahler K.: Über Transzendente p-adische Zahlen. Compozitio Mathematica. 2 (1935), 259-275. MR 1556919 | Zbl 0012.05302
[3] Adams W. W.: Transcendental numbers in the p-adic domain. Amer. J. Math. 88 (1966), 279-308. DOI 10.2307/2373193 | MR 0197399 | Zbl 0144.29301
[4] Mahler K.: p-adic numbers and their functions. Cambridge, 1981. MR 0644483 | Zbl 0444.12013
[5] Beresnevich V., Kovalevskaya E.: A full analogue of the Khintchine theorem for planar curves in $Z_p$. Preprint, Institute of Math. NAS Belarus. 2 (556) Minsk, 2000.
[6] Bernik V., Dodson M.: Metric Diophantine approximation on manifolds. Cambridge Tracts in Math. 137, Camb. Univ. Press, Cambridge, 1999. MR 1727177 | Zbl 0933.11040
[7] Melnichuk, Yu.: On the metric theory of the joint Diophantine approximation of p-adic numbers. Dokl. Akad. Nauk Ukrain. SSR, Ser. A.5 (1078), 394-397.
[8] Kovalevskaya E.: The convergence Khintchine theorem for polynomials and planar p-adic curves. Tatra Mt. Math. Publ. 20 (2000), 163-172. MR 1845457 | Zbl 0992.11043
[9] Silaeva N.: On analogue of Schmidt's theorem for curves in 3-dimensional p-adic spase. Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 4 (2001), 35-41.
[10] Beresnevich V., Vasilyev D.: An analogue of the Khintchine theorem for curves in 3-dimensional complex space. Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 1 (2001), 5-7.
[11] Bernik V., Kovalevskaya E.: Extremal property of some surfaces in n-dimensional Euclidean space. Mat. Zarnetki 15 N 2, 247-254. Zbl 0287.10045
Partner of
EuDML logo