Previous |  Up |  Next

Article

References:
[BL] G. Boutteaux, S. Louboutin. : The ciass number one problem for some non-normal sextic CM-fields. Analytic number theory (Beijing/Kjoto, 1999), 27-37, Dev. Math. 6, Kluwer Acad. Publ., Dordrecht, 2002. DOI 10.1007/978-1-4757-3621-2_3 | MR 1901973
[Bou] G. Boutteaux. : Détermination des corps à multiplication complexe, sextiques, non galoisiens et principaux. PҺD Thesis, in preparation.
[Lan] S. Lang. : Algebraic Number Theory. Spгinger-Verlag, Grad. Texts Math. 110, Second Edition. MR 1282723 | Zbl 1151.11302
[LLO] F. Lemmermeyer S. Louboutin, R. Okazaki. : The class number one problem for some non-abelian normal CM-fields of degree 24. Journal de Théorie des Nombres de Bordeaux 11 (1999), 387-406. DOI 10.5802/jtnb.257 | MR 1745886
[LO] S. Louboutin, R. Okazaki. : Determination of all non-normal quartic CM-fieids and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. MR 1292520
[LOO] S. Louboutin R. Okazaki, M. Olivier. : The class number one probiem for some non-abeiian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. DOI 10.1090/S0002-9947-97-01768-6 | MR 1390044
[Loul] S. Louboutin. : On the class number one problem for nonnormal quartic CM-fields. Tôhoku Math. J. 46 (1994), 1-12. DOI 10.2748/tmj/1178225798 | MR 1256724
[Lou2] S. Louboutin. : Lower bounds for relative class numbers of CM-fields. Proc. Amer. Math. Soc. 120 (1994), 425-434. DOI 10.1090/S0002-9939-1994-1169041-0 | MR 1169041 | Zbl 0795.11058
[LouЗ] S. Louboutin. : Determination of all quaternion octic CM-fields with class number 2. J. London. Math. Soc. (2) 54 (1996), 227-238. DOI 10.1112/jlms/54.2.227 | MR 1405052 | Zbl 0861.11064
[Lou4] S. Louboutin. : Computation of relative class numbers of CM-fields. Math. Comp. 66 (1997), 173-184. DOI 10.1090/S0025-5718-97-00863-6 | MR 1422790 | Zbl 0879.11064
[Lou5] S. Louboutin. : Upper bounds on $|L(1,\chi)|$ and applications. Canad. J. Math. 50 (1999), 794-815. DOI 10.4153/CJM-1998-042-2 | MR 1638619 | Zbl 1209.65156
[Lou6] S. Louboutin. : Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1, and relative class numbers. J. Number Theory 85 (2000), 263-282. DOI 10.1006/jnth.2000.2545 | MR 1802716 | Zbl 0967.11049
[Lou7] S. Louboutin. : Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s = 1, and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math. 53 (2001), 1194-1222. DOI 10.4153/CJM-2001-045-5 | MR 1863848 | Zbl 0998.11066
[LYK] S. Louboutin Y.-S. Yang, S.-H. Kwon. : The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\leq 2$. Preprint (2000).
[Mar] J. Martinet. : Sur ľarithmétique des extensions à groupe de Galois diédral ďordre 2p. Ann. Inst. Fourier (GrenoЫe) 19 (1969), 1-80. DOI 10.5802/aif.307 | MR 0262210
[Oka] R. Okazaki. : Non-normal class number one problem and the least prime power-гesidue. In Number Theory and Applications (series: Develoments in Mathematics Volume 2), edited by S. Kanemitsu and K. Györy from Kluwer Academic Publishers (1999) pp. 273-289. MR 1738823
[Sta] H. M. Stark. : Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135-152. DOI 10.1007/BF01405166 | MR 0342472 | Zbl 0278.12005
[Wa] L. C. Washington. : Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag. MR 1421575 | Zbl 0966.11047
Partner of
EuDML logo