[1] W.O. Alltop:
Complex Sequences with Low Periodic Correlations. IEEE Trans. IT-26, 350 - 354, 1980.
MR 0570020 |
Zbl 0432.94011
[2] H. Boche: Behavior of Multitone Signals with Schroeder's Phase. Proc. ICSP'98, Intern. Conf. on Sign. Proc, Beijing, China, pp. 133 - 138, IEEE Press, 1998.
[3] H. Boche:
Invertierung von Multiton-Funktionen in fast linearen Systemen. Electrical Engineering, Springer, Vol. 81, No. 3, pp. 143 - 150, 1998.
DOI 10.1007/BF01236233
[4] H. Boche: Zum Verhalten der Autokorrelationsfunktion zeitdiskreter Funktionen. accepted in ZAMM, Zeitschrift für Angew. Math, und Mech., 1999.
[5] S. Boyd: Multitone Signals with Low Crest Factor. IEEE CAS, vol. 33, No. 10, 1986.
[6] D.C.Chu:
Polyphase Codes with Good Periodic Correlation Properties. IEEE Trans. IT-18, 531 - 532, 1972.
Zbl 0239.94015
[8] D.C. Evans D. Rees D.L. Jones: Design of Test Signals for Identification of Linear Systems with Nonlinear Distortions. IEEE Transactions on Instrumentations and Measurement (IM), Vol. 41, No. 6, 1992.
[9] R.L. Frank S.A. Zadoff: Phase shift pulse codes with good periodic correlation properties. IEEE Trans. IT-8, 381 - 382, 1962.
[10] R.L. Frank: Polyphase Codes with Good Nonperiodic Correlation Properties. IEEE Trans. IT-9, 443 - 45, 1963.
[11] R.L. Frank: Comments on "Polyphase Codes with Good Correlation Properties". IEEE Trans. IT-19, 244, 1973.
[13] M. Golay:
Sieves for Law Autocorrelation Binary Sequences. IEEE Trans. Inform. Theory, vol. IT-23: 43-51, 1997.
DOI 10.1109/TIT.1977.1055653
[14] S.W. Graham G.Kolesnik:
One and Two Dimensional Exponential Sums. Analytic Number Theory and Diophantine Problems (editors A.C. Adolphson, J.B. Conrey, A. Ghosh and R.L Yager, Birkhauser, Boston, 1987) 205 - 222.
MR 1018377 |
Zbl 0626.10034
[15] S.W.Graham G.Kolesnik:
Van der Corput's Method of Exponential Sums. Cambridge University Press, 1991.
MR 1145488
[16] G.H. Hardy, J.E. Littlewood:
Some Problems of Diophantine Approximation: A Remarkable Trigonometrical Series. Proc. Nat. Acad. USA 2 (1916), pp. 583 - 586.
DOI 10.1073/pnas.2.10.583
[17] R.C. Heimiller: Phase Shift Pulse Codes with Good Periodic Correlation Properties. IEEE Trans. IT-7, 254 - 257, 1961.
[19] J. Massey:
HASH(0x373fe78). Personliche Mitteilung, ETH-Zurich, 1997.
Zbl 1037.94537
[20] J. Massey:
HASH(0x3742cc0). Personliche Mitteilung, ITG-Diskussionssitzung 'Moglichkeiten und Grenzen der digitalen Signalverarbeitung in Funksystemen', Lucent Technologies, 1997.
Zbl 1037.94537
[21] D.I. Newman:
An L1 Eternal Problem for Polynomials. Proc. Amer. Math. Soc., vol. 16, 1287 - 1290, 1965.
MR 0185119
[24] J. Ruprecht: Maximum-Likelihood Estimation of Multipath Channels. Ed. J. Massey, PhD Thesis ETH Zurich, Hartung Gorre Verlag, Konstanz, 1989.
[25] J. Ruprecht F.D. Nesser M. Hufschmidt: Code Time Division Multiple Access: An Indoor Cellular System. Proc. VTC'92, Denver. 1992.
[26] M. Rupf: Coding for CDMA Channels and Capacity. Dissertation ETH Zurich, 1994.
[27] J. Ruprecht M. Rupf: On the Search and Construction of Good Invertible Binary Sequences. ISIT'94, Int. Symp. on Information Theory, Trondheim, 1994.
[28] D.S. Sarwate:
Bounds on Crosscorrelation and Autocorrelation of Sequences. IEEE Trans. IT-25, 720 - 724, 1979.
MR 0551272 |
Zbl 0422.94010
[29] D.V.Sarwate M.B. Pursley: Crosscorrelation Properties of Pseudorandom and Related Sequences. Proc. IEEE 68, 593 - 619, 1980.
[30] M.R. Schroeder: Synthesis of Low Peak-Factor Signal and Binary Sequences with Low Autocorrelation. IEEE Trans. IT-13 85 -89, 1970.
[31] M.R. Schroeder: Number Theory in Science and Communication. Springer Series in Information Sciences, Springer Verlag, Berlin, 1983.
[32] J.E. Stalder C.R. Cahn: Bounds for Correlation Peaks of Periodic Digital Sequences. Proc. IEEE 52, 1262 - 1263, 1964.
[33] L.R.Welch: Lower Bounds on the Maximum Oross Correlation of Signals. IEEE Trans. IT-20, 397 - 399, 1974.
[34] A. Zygmund:
Trigonometric Series, Vol. I, II. Cambridge University press, Cambridge, 1968.
MR 0236587