Previous |  Up |  Next

Article

References:
[1] Berkovits J., Mustonen V.: Existence and multiplicity results for semilinear beam equations. Preprint Univ. of Oulu, 1991. MR 1468743 | Zbl 0811.35014
[2] Beгkovits J., Drábek P., Mustonen V.: HASH(0x1fb9708). In pгeparation.
[3] Drábek: Nonlinear noncoercive equations and applications. Z. Anal. Anwendungen 1 (5) (1983), 53-65. MR 0720043
[4] Fonda A., Schneider Z., Zanolin F.: Periodic oscillations for a nonlinear suspension bridge model. Prepublication Inst. Mat. Pure Appliq., Univ. Catol. Louvain, 1992.
[5] Fučík S.: Nonlinear noncoercive problems. Conf. del Seminario di Mat. Univ. Bari (S.A.F.A. III), Bari (1978), 301-353. MR 0585118
[6] Glover J., Lazer A. C., Mc Kenna P. J.: Existence and stability of large scale nonlinear oscillations in suspension bridges. J. Appl. Matһ. Phys. (ZAMP) 40 (1989), 172-200. DOI 10.1007/BF00944997 | MR 0990626
[7] Krejčí P.: On solvability of equations of the 4th order with jumping nonlinearities. Čas. pěst. mat. 108 (1983), 29-39. MR 0694138
[8] Lazer A. C, McKenna P. J.: Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henгi Poincaré, Analyse non linéaire 4 (1987), 244-274. MR 0898049 | Zbl 0633.34037
[9] Lazer A. C, McKenna P. J.: Existence, uniqueness, and stability of oscilations in differential equations with asymmetric nonlinearities. Trans. Amer. Math. Society 315 2 (1989), 721-739. DOI 10.1090/S0002-9947-1989-0979963-1 | MR 0979963
[10] Lazer A. J., McKenna P. J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAMS Review 32 (4), 1990, 537-578. DOI 10.1137/1032120 | MR 1084570 | Zbl 0725.73057
[11] McKenna P. J., Walter W.: Nonlinear oscillations in a suspension bridge. Arcһ. Rational Mech. Anal. 98 (1987), 167-177. MR 0866720 | Zbl 0676.35003
[12] Vejvoda O., et al.: Partial Differential Equations-time periodic solutions. Sijthoff Nordhoff, The Netherlands, 1981.
Partner of
EuDML logo