Previous |  Up |  Next

Article

References:
[1] Andres J.: Period three implications for expansive maps in $\mathbb R$. J. Difference Eqns. Appl., to appear. MR 2033331
[2] Andres J., Jütner L., Pastor K.: On a multivalued version to the Sharkovskii theorem and its application to differential inclusions. II. Preprint (2002). MR 2036383
[3] Aleksandrov P., Pasynkov B.: Introduction to the Dimensional Theory. Nauka, Moscow, 1973 (in Russian). MR 0365524
[4] Brown R. F.: A Topological Introduction to Nonlinear Analysis. Birkhäuser, Boston, 1993. MR 1232418 | Zbl 0794.47034
[5] Dugunji J., Granas A.: Fixed Points Theory. PWN, Warzsawa, 1982.
[6] Górniewicz L.: Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrecht, 1999. MR 1748378
[7] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. MR 1485775
[8] Kampen J.: On fixed points of maps and iterated maps and applications. Nonlinear Analysis 42 (2000), 509-532. MR 1775390 | Zbl 0967.37014
[9] Kloeden P. E.: On Sharkovsky's cycle coexisting ordering. Bull. Austral. Math. Soc. 20 (1979), 171-177. MR 0557223
[10] Robinson C.: Dynamical Systems. CRC Press, London, 1995. MR 1396532 | Zbl 0853.58001
[11] Schirmer H.: A Topologist’s View of Sharkovsky’s Theorem. Houston Journal of Mathematics 11, 3 (1985). MR 0808654 | Zbl 0606.54031
[12] Shashkin, Yu. A.: Fixed Points. Amer. Math Soc., Providence, R.I., 1991. Zbl 0762.54034
[13] Zgliczynski P.: Sharkovskii theorem for multidimensional perturbations of onedimensional maps. II. Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169-182. MR 1758885
Partner of
EuDML logo