Previous |  Up |  Next

Article

References:
[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124.
[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure. Czech. Math. Jour. 32, 107 (1982), 556-581. MR 0682132
[3] Ishihara S.: Normal structure f satisfying f3 -f = 0. Ködai Math. Sem. Rep. 18 1966, 36-47. MR 0210023
[4] Clark R. S., Goel D. S.: On the geometry of an almost tangent manifold. Tensor N. S. 24 (1972), 243-252. MR 0326613
[5] Clark R. S., Goel D. S.: Almost tangent manifolds of second order. Tohoku Math. Jour. 24 (1972), 79-92. MR 0317222 | Zbl 0246.53036
[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. MR 0212720 | Zbl 0145.42103
[7] Lehmann-Lejeune J.: Sur l’intégrabilité de certaines G-structures. C. R. Acad. Sci Paris 258 1984, 32-35. MR 0162200
[8] Pham Mau Quam: Introduction à la géométrie des variétés différentiables. Dunod, Paris, 1968.
[9] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27 1976, 42-50. MR 0400106
[10] Vanžura J.: Simultaneous integrability of an almost tangent structure and a distribution. Demonstratio Mathematica 19, 1 (1986), 359-370. MR 0895009
[11] Vanžurová A.: Polynomial structures on manifolds. Ph.D. thesis, 1974.
[12] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying f3+f= 0. Tensor 14, 1963, 99-109. MR 0159296
[13] Walker A. G.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. 3, 94-100. MR 0123993 | Zbl 0103.38801
Partner of
EuDML logo