Previous |  Up |  Next

Article

References:
[1] Ahlberg J. H., Nilson E. N., Walsh J. L.: The Theory of Splines and Their Applications. Academic Press, N.Y., 1967. MR 0239327 | Zbl 0158.15901
[2] Albasiny E. L., Hoskins W. D.: The numerical calculation of odd-degree polynomial splines with equidistant knots. J. Inst. Maths. Appl. 7 (1971), 384-397. MR 0290005
[3] Boor C. de: A Practical Guide to Splines. Springer, N.Y., 1978. MR 0507062 | Zbl 0406.41003
[4] Fyfe I. J.: Linear dependence relations connecting equal interval N-th degree splines and their derivatives. J. Inst. Maths. Appl. 7 (1971), 398-406. MR 0284748
[5] Hoskins W. D., Meek D. S.: Linear dependence relations for polynomial splines at midknots. BIT 15 (1975), 272-276. MR 0391470 | Zbl 0311.65002
[6] Kobza J.: Spline functions. Nakl. UP, Olomouc, 1993, 224 pp., (in Czech - textbook)
[7] Kobza J.: Quadratic splines interpolating derivatives. Acta Univ. Palacki. Olomuc., Fac rer. nat. 100, Math. 30 (1991), 219-233. MR 1166439 | Zbl 0758.41005
[8] Kobza J.: Quartic interpolatory splines. In: Proc. NMTP, Pilsen 1993, 89-96.
[9] Kobza J.: Some algorithms for computing local parameters of quartic interpolatory splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114, Math. 33 (1994), 63-73. MR 1385747
[10] Kobza J.: Interpolatory and smoothing splines of even degrees. In: Proc. ISNA ’92, P.III, Prague 1992, 122-136.
[11] Spaeth H.: Spline-Algorithmen zur Konstruktion glatter Kurven und Flaechen. Oldenbourgh Verlag, 1973, 134 pp. MR 0359266 | Zbl 0276.65006
[12] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen. Oldenbourgh Verlag, 1990, 390 pp. MR 1208909 | Zbl 0701.41015
[13] Zavjalov J. S., Kvasov B. I., Miroschnichenko V. L.: Methods of Spline-Functions. Moscow, 1980 (in Russian).
Partner of
EuDML logo