Previous |  Up |  Next

Article

References:
[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom., Budapest 1979, 119-124.
[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure. Czech. Math. Jour., 32 (107), 1982, 556-581. MR 0682132
[3] Goldberg S. I., Yano K.: Polynomial structures on manifolds. Ködai Math. Sem. Rep. 22, 1970, 199-218. MR 0267478 | Zbl 0194.52702
[4] Ishihara S.: Normal structure $f$ satisfying $f^3 + f = 0$. Ködai Math. Sem. Rep. 18, 1966, 36-47. MR 0210023
[5] Kubát V.: Simultaneous integrability of two J-related almost tangent structures. CMUC (Praha) 20, 3, 1979, 461-473. MR 0550448 | Zbl 0436.53032
[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16, 2, Grenoble 1966, 329-387. MR 0212720 | Zbl 0145.42103
[7] Opozda B.: Almost product and almost complex structures generated by polynomial structures. Acta Math. Jagellon. Univ. XXIV, 1984, 27-31. MR 0815882 | Zbl 0582.53032
[8] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27, 1976, 42-50 MR 0400106
[9] Vanžurová A.: Polynomial structures on manifolds. Ph.D. thesis, 1974.
[10] Vanžurová A.: On polynomial structures and their G-structures. (to appear).
[11] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$. 99-109. MR 0159296
Partner of
EuDML logo