Previous |  Up |  Next

Article

Keywords:
complex projective space; Dirac operator; spectral theory
Summary:
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space $\Bbb P^{2q+1}(\Bbb C)$ for $q\geq 1$.
References:
[1] Cahen M., Gutt S.: Spin structures on compact simply connected Riemannian symmetric spaces. Simon Stevin 62 (1988), 209-242. MR 0976428 | Zbl 0677.53057
[2] Cahen M., Franc M., Gutt S.: Spectrum of the Dirac operator on complex projective space $P_{2q-1}(\Bbb C)$. Lett. Math. Phys. 18 (1989), 165-176. DOI 10.1007/BF00401871 | MR 1010996
[3] Fegan H.D., Steer B.: First order differential operators on a locally symmetric space. Pacific J. Math. 194 (2000), 83-95. DOI 10.2140/pjm.2000.194.83 | MR 1756627 | Zbl 1027.58027
[4] Friedrich T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence, Rhode Island, 2000. MR 1777332 | Zbl 0949.58032
[5] Ikeda A., Taniguchi Y.: Spectra and eigenforms of the Laplacian on $S^n$ and $P^n(\Bbb C)$. Osaka J. Math. 15 (1978), 515-546. MR 0510492
[6] Milhorat J.-L.: Spectrum of the Dirac operator on $Gr_{2}(\Bbb C^{m+2})$. J. Math. Phys. 39 (1998), 594-609. DOI 10.1063/1.532324 | MR 1489638
[7] Milhorat J.-L.: Spectre de l'opérateur de Dirac sur les espaces projectifs quaternioniens. C.R. Acad. Sci. Paris, Série I 314 (1992), 69-72. MR 1149642 | Zbl 0753.47039
[8] Parthasarathy R.: Dirac operators and the discrete series. Ann. of Math. 96 (1972), 1-30. DOI 10.2307/1970892 | MR 0318398
[9] Seifarth S., Semmelmann U.: The Spectrum of the Dirac operator on the complex projective space $\Bbb P^{2m-1}(\Bbb C)$. preprint SFB No. 95, Berlin, 1993.
[10] Strese H.: Über den Dirac-Operator auf Grassmann-Mannigfaltigkeiten. Math. Nachr. 98 (1980), 53-59. DOI 10.1002/mana.19800980107 | MR 0623693 | Zbl 0473.53047
[11] Wallach N.: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York, 1973. MR 0498996 | Zbl 0265.22022
Partner of
EuDML logo