Previous |  Up |  Next

Article

Keywords:
quadratical quasigroup; skewsquare
Summary:
The concept of pseudosquare in a general quadratical quasigroup is introduced and connections to some other geometrical concepts are studied. The geometrical presentations of some proved statements are given in the quadratical quasigroup $\Bbb C(\frac{1+i}{2})$.
References:
[1] Cavallaro V.G.: Generalizzazione d'una proposizione d'Erone e d'una proposizione d'Huygens. Period. Mat. (4) 15 (1935), 293-294.
[2] Dudek W.A.: Quadratical quasigroups. Quasigroups Related Systems 4 (1997), 9-13. MR 1767514 | Zbl 0944.20052
[3] Durieu M.: Polygones bordés de triangles. Mathesis 57 (1948), 77-80. MR 0077133
[4] Echols W.H.: Some properties of a skewsquare. Amer. Math. Monthly 30 (1923), 120-127. DOI 10.2307/2298556 | MR 1520186
[5] Gerber L.: Napoleon's theorem and the parallelogram inequality for affine-regular polygons. Amer. Math. Monthly 87 (1980), 644-648. DOI 10.2307/2320952 | MR 0600923 | Zbl 0458.51018
[6] Laisant C.A.: Sur quelques propriétés de polygones. Assoc. Franc. Advanc. Sci. 6 (1877), 142-154.
[7] Neuberg J.: Question 878. Mathesis (2) 3 (1893), 216; 5 (1895), 118-119. MR 1058876
[8] Ostermann F., Schmidt J.: Begründung der Vektorrechnung aus Parallelogrammeigenschaften. Math.-phys. Semesterber 10 (1963), 47-64. Zbl 0114.36702
[9] Thébault V.: Octogone bordé de carrés. Mathesis 54 (1940), 114-117; Rev. Mat. Timişoara 20 (1940), 81-83. MR 0004946
[10] Thébault V.: Quadrangle bordé de triangles isoscèles semblables. Ann. Soc. Sci. Bruxelles 60 (1940-46), 64-70; Mathesis 54 (1940), suppl., 7 pp. MR 0004945
[11] Volenec V.: Geometry of medial quasigroups. Rad JAZU 421 (1986), 79-91. MR 0857271 | Zbl 0599.20112
[12] Volenec V.: Quadratical groupoids. Note Mat. 13 (1993), 107-115. MR 1283522 | Zbl 0811.20066
[13] Volenec V.: Squares in quadratical quasigroups. Quasigroups Related Systems 7 (2000), 37-44. MR 1848541 | Zbl 0981.20058
[14] Volenec V., Kolar-Šuper R.: Parallelograms in quadratical quasigroups. to appear.
Partner of
EuDML logo