Previous |  Up |  Next

Article

Keywords:
generalized three-point boundary value problem; system of differential equations; eigenvalue problem
Summary:
Values of $\lambda$ are determined for which there exist positive solutions of the system of three-point boundary value problems, $u''+\lambda a(t) f(v) = 0$, $v''+\lambda b(t) g(u) = 0$, for $0 < t < 1$, and satisfying, $u(0) = \beta u(\eta)$, $u(1)=\alpha u(\eta)$, $v(0) = \beta v(\eta)$, $v(1) = \alpha v(\eta)$. A Guo-Krasnosel'skii fixed point theorem is applied.
References:
[1] Agarwal R.P., O'Regan D., Wong P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer, Dordrecht, 1999. Zbl 1157.34301
[2] Benchohra M., Hamani S., Henderson J., Ntouyas S.K., Ouahab A.: Positive solutions for systems of nonlinear eigenvalue problems. Global J. Math. Anal. 1 (2007), 19-28. MR 2374098
[3] Erbe L.H., Wang H.: On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), 743-748. DOI 10.1090/S0002-9939-1994-1204373-9 | MR 1204373 | Zbl 0802.34018
[4] Graef J.R., Yang B.: Boundary value problems for second order nonlinear ordinary differential equations. Commun. Appl. Anal. 6 (2002), 273-288. MR 1894171 | Zbl 1085.34514
[5] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones. Academic Press, Orlando, 1988. MR 0959889 | Zbl 0661.47045
[6] Henderson J., Ntouyas S.K.: Positive solutions for systems of nonlinear boundary value problems. Nonlinear Studies, in press. Zbl 1148.34016
[7] Henderson J., Ntouyas S.K.: Positive solutions for systems of three-point nonlinear boundary value problems. Austr. J. Math. Anal. Appl., in press. MR 2413225
[8] Henderson J., Wang H.: Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl. 208 (1997), 1051-1060. DOI 10.1006/jmaa.1997.5334 | MR 1440355 | Zbl 0876.34023
[9] Henderson J., Wang H.: Nonlinear eigenvalue problems for quasilinear systems. Comput. Math. Appl. 49 (2005), 1941-1949. DOI 10.1016/j.camwa.2003.08.015 | MR 2154696 | Zbl 1092.34517
[10] Henderson J., Wang H.: An eigenvalue problem for quasilinear systems. Rocky Mountain J. Math. 37 (2007), 215-228. DOI 10.1216/rmjm/1181069327 | MR 2316445 | Zbl 1149.34013
[11] Hu L., Wang L.L.: Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equations. J. Math. Anal. Appl. 335 (2007), 2 1052-1060. DOI 10.1016/j.jmaa.2006.11.031 | MR 2346890 | Zbl 1127.34010
[12] Infante G.: Eigenvalues of some nonlocal boundary value problems. Proc. Edinburgh Math. Soc. 46 (2003), 75-86. MR 1961173
[13] Infante G., Webb J.R.L.: Loss of positivity in a nonlinear scalar heat equation. Nonlinear Differential Equations Appl. 13 (2006), 249-261. DOI 10.1007/s00030-005-0039-y | MR 2243714 | Zbl 1112.34017
[14] Liang R., Peng J., Shen J.: Positive solutions to a generalized second order three-point boundary value problem. Appl. Math. Comput. (2007) doi:10.1016/j.amc.2007.07.025. Zbl 1140.34313
[15] Ma R.: Multiple nonnegative solutions of second order systems of boundary value problems. Nonlinear Anal. 42 (2000), 1003-1010. DOI 10.1016/S0362-546X(99)00152-2 | MR 1780450 | Zbl 0973.34014
[16] Raffoul Y.: Positive solutions of three-point nonlinear second order boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2002, no. 15, 11pp. (electronic). MR 1934391
[17] Wang H.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281 (2003), 287-306. DOI 10.1016/S0022-247X(03)00100-8 | MR 1980092 | Zbl 1036.34032
[18] Webb J.R.L.: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Anal. 47 (2001), 4319-4332. DOI 10.1016/S0362-546X(01)00547-8 | MR 1975828 | Zbl 1042.34527
[19] Zhou Y., Xu Y.: Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations. J. Math. Anal. Appl. 320 (2006), 578-590. DOI 10.1016/j.jmaa.2005.07.014 | MR 2225977 | Zbl 1101.34008
Partner of
EuDML logo