Previous |  Up |  Next

Article

Keywords:
hypercyclic operators; porous sets; Haar-null sets
Summary:
We study the ``smallness'' of the set of non-hypercyclic vectors for some classical hypercyclic operators.
References:
[1] Bayart F.: Porosity and hypercyclic vectors. Proc. Amer. Math. Soc. 133 (2005), 11 3309-3316. DOI 10.1090/S0002-9939-05-07842-1 | MR 2161154
[2] Bonilla A., Grosse-Erdmann K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Systems 27 (2007), 2 383-404. MR 2308137 | Zbl 1119.47011
[3] Christensen J.P.R.: On sets of Haar measure zero in abelian Polish groups. Israel J. Math. 13 (1972), 255-260. DOI 10.1007/BF02762799 | MR 0326293
[4] Dolženko E.P.: Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14. MR 0217297
[5] Godefroy G., Shapiro J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98 (1991), 2 229-269. DOI 10.1016/0022-1236(91)90078-J | MR 1111569 | Zbl 0732.47016
[6] Grosse-Erdmann K.-G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36 (1999), 345-381. DOI 10.1090/S0273-0979-99-00788-0 | MR 1685272 | Zbl 0933.47003
[7] Ott W., Yorke J.A.: Prevalence. Bull. Amer. Math. Soc. 42 (2005), 263-290. DOI 10.1090/S0273-0979-05-01060-8 | MR 2149086 | Zbl 1111.28014
[8] Salas H.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347 (1995), 3 993-1004. DOI 10.1090/S0002-9947-1995-1249890-6 | MR 1249890 | Zbl 0822.47030
[9] Zajíček L.: Porosity and $\sigma$-porosity. Real Anal. Exchange 13 (1987-1988), 2 314-350. MR 0943561
[10] Zajíček L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$. Časopis Pěst. Mat. 101 (1976), 350-359. MR 0457731 | Zbl 0341.30026
Partner of
EuDML logo