Previous |  Up |  Next

Article

Keywords:
neighbourhood assignment; duality; weak duality; Lindelöf space; weakly Lindelöf space
Summary:
Given a topological property (or a class) $\Cal P$, the class $\Cal P^*$ dual to $\Cal P$ (with respect to neighbourhood assignments) consists of spaces $X$ such that for any neighbourhood assignment $\{O_x:x\in X\}$ there is $Y\subset X$ with $Y\in \Cal P$ and $\bigcup\{O_x:x\in Y\}=X$. The spaces from $\Cal P^*$ are called {\it dually $\Cal P$\/}. We continue the study of this duality which constitutes a development of an idea of E. van Douwen used to define $D$-spaces. We prove a number of results on duals of some general classes of spaces establishing, in particular, that any generalized ordered space of countable extent is dually discrete.
References:
[AB] Arhangel'skii A.V., Buzyakova R.Z.: Convergence in compacta and linear Lindelöfness. Comment. Math. Univ. Carolin. 39 1 (1998), 159-166. MR 1623006 | Zbl 0937.54022
[ATW] Alas O.T., Tkachuk V.V., Wilson R.G.: Covering properties and neighbourhood assignments. Topology Proc. 30 1 (2006), 25-37. MR 2280656
[DTTW] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces. Glas. Mat. Ser. III 37(57) (2002), 1 187-210. MR 1918105 | Zbl 1009.54005
[vDL] van Douwen E.K., Lutzer D.J.: A note on paracompactness in generalized ordered spaces. Proc. Amer. Math. Soc. 125 4 (1997), 1237-1245. MR 1396999 | Zbl 0885.54023
[En] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[Lu] Lutzer D.J.: Ordered Topological Spaces. Surveys in General Topology, ed. by G.M. Reed, Academic Press, New York, 1980, pp. 247-295. MR 0564104 | Zbl 0472.54020
[vMTW] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments. Topology Appl. 154 (2007), 2127-2134. MR 2324924 | Zbl 1131.54022
[Os] Ostaszewski A.: On countably compact, perfectly normal spaces. J. London Math. Soc. 14 2 (1976), 505-516. MR 0438292 | Zbl 0348.54014
[Ro] Roitman J.: Basic $S$ and $L$. Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E. Vaughan, Elsevier S.P. B.V., Amsterdam, 1984, pp.295-326. MR 0776626 | Zbl 0594.54001
[To] Todorcevic S.: Partition Problems in Topology. Contemporary Math. 84, Amer. Math. Soc., Providence, RI, 1989. MR 0980949 | Zbl 0659.54001
Partner of
EuDML logo