[1] Abramovich Y.A., Aliprantis C.D.:
An Invitation to Operator Theory. Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002.
MR 1921782 |
Zbl 1022.47001
[2] Abramovich Y.A., Aliprantis C.D.:
Problems in Operators Theory. Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002.
MR 1921783
[3] Abramovich Y.A., Kitover A.K.:
Inverses of disjointness preserving operators. Memoirs Amer. Math. Soc. 143 (2000), 679.
MR 1639940 |
Zbl 0974.47032
[5] Arendt W.:
Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32 (1983), 199-215.
MR 0690185 |
Zbl 0488.47016
[6] Ben Amor F., Boulabiar K.:
On the modulus of disjointness preserving operators on complex vector lattices. Algebra Universalis 54 (2005), 185-193.
MR 2217635 |
Zbl 1107.47026
[7] Ben Amor F., Boulabiar K.:
Maximal ideals of disjointness preserving operators. J. Math. Anal. Appl. 322 (2006), 599-609.
MR 2250601
[8] Bernau S.:
Orthomorphisms of Archimedean vector lattices. Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128.
MR 0591978 |
Zbl 0463.46002
[9] Bigard A., Keimel K., Wolfenstein S.:
Groupes et anneaux réticulés. Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977.
MR 0552653 |
Zbl 0384.06022
[10] Bigard A., Keimel K.:
Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien. Bull. Soc. Math. France 97 (1969), 381-398.
MR 0262137
[11] Conrad P.F., Diem J.E.:
The Ring of polar preserving endomorphisms of an abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222-240.
MR 0285462 |
Zbl 0213.04002
[12] Gillman L., Jerison M.:
Rings of Continuous Functions. Springer, Berlin-Heidelberg-New York, 1976.
MR 0407579 |
Zbl 0327.46040
[13] Huijsmans C.B., Luxemburg W.A.J.:
An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms. Acta. Appl. Math. 27 (1992), 67-71.
MR 1184878 |
Zbl 0807.47023
[14] Huijsmans C.B., de Pagter B.:
Disjointness preserving and diffuse operators. Compositio Math. 79 (1991), 351-374.
MR 1121143 |
Zbl 0757.47023
[15] Luxemburg W.A.J.:
Some aspects of the theory of Riesz spaces. Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979.
MR 0568706 |
Zbl 0431.46003
[16] Luxemburg W.A.J., Schep A.R.:
A Radon-Nikodým type theorem for positive operators and a dual. Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375.
MR 0507829 |
Zbl 0389.47018
[17] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam, 1971.
[18] Meyer M.:
Le stabilateur d'un espace vectoriel réticulé. C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250.
MR 0433191
[20] de Pagter B.: $f$-algebras and orthomorphisms. Thesis, Leiden, 1981.
[21] de Pagter B.:
A note on disjointness preserving operators. Proc. Amer. Math. Soc. 90 (1984), 543-549.
MR 0733403 |
Zbl 0541.47032
[22] de Pagter B., Schep A.R.:
Band decomposition for disjointness preserving operators. Positivity 4 (2000), 259-288.
MR 1797129 |
Zbl 0991.47022
[23] van Putten B.: Disjunctive linear operators and partial multiplication in Riesz spaces. Thesis, Wageningen, 1980.
[24] Wójtowicz M.:
On a weak Freudenthal spectral theorem. Comment. Math. Univ. Carolin. 33 (1992), 631-643.
MR 1240185
[26] Zaanen A.C.:
Introduction to Operator Theory in Riesz Spaces. Springer, Berlin-Heidelberg-New York, 1997.
MR 1631533 |
Zbl 0878.47022