[1] Alama S., Del Pino M.:
Solutions of elliptic equation with indefinite nonlinearities via Morse theory and linking. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 95-115.
MR 1373473
[2] Alama S., Tarantello G.:
On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differential Equations 1 (1993), 469-475.
MR 1383913 |
Zbl 0809.35022
[3] Amann H.:
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620-709.
MR 0415432 |
Zbl 0345.47044
[4] Ambrosetti A., Brezis H., Cerami G.:
Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543.
MR 1276168 |
Zbl 0805.35028
[5] Ambrosetti A., Azorero J.G., Peral I.:
Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137 (1996), 214-242.
MR 1383017 |
Zbl 0852.35045
[6] Ambrosetti A., Azorero J.G., Peral I.:
Existence and multiplicity results for some nonlinear elliptic equations. a survey, SISSA preprint 4/2000/M.
MR 1801341 |
Zbl 1011.35049
[7] Arcoya D., Boccardo L.:
Some remarks on critical point theory for nondifferentiable functionals. Nonlinear Differential Equations Appl. 6 (1999), 79-100.
MR 1674782 |
Zbl 0923.35049
[8] Arcoya D., Carmona J., Pellacci B.: Bifurcation for some quasi-linear operators. SISSA preprint, 1999.
[9] Artola M., Boccardo L.:
Positive solutions for some quasi-linear elliptic equations. Comm. Appl. Nonlinear Anal. 3 4 (1996), 89-98.
MR 1420287
[10] Chang K.C.:
Infinite dimensional Morse theory and multiple solution problems. Birkhäuser, Boston, 1993.
MR 1196690 |
Zbl 0779.58005
[11] Chang K.C.:
$H^1$ versus $C^1$ isolated critical points. C.R. Acad. Sci. Paris, Sér. I Math. 319 441-446 (1994).
MR 1296769
[12] Dancer E.N., and Du Yihong:
A note on multiple solutions for some semilinear elliptic problems. J. Math. Anal. Appl. 211 (1997), 626-640.
MR 1458519
[13] de Figueiredo D.G.:
Positive solutions of semilinear elliptic problems. in Variational Methods in Analysis and Mathematical Physics, ICTP Trieste autumn course, 1981.
Zbl 0506.35038
[14] Mawhin J., Willem M.:
Critical point theory and Hamiltonian Systems. Springer, New York, 1989.
MR 0982267 |
Zbl 0676.58017
[15] Li. S., Wang Z.Q.:
Mountain-pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet's problems. J. Anal. Math. 81 (2000), 373-395.
MR 1785289
[16] Li S., Zhang Z.:
Sign-changing solutions ad multiple solution theorems for semilinear elliptic boundary value problems with jumping nonlinearities. Acta Math. Sinica 16 1 (2000), 113-122.
MR 1760528
[17] Struwe M.:
Variational Methods: Applications to Nonlinear Partial Differential Equation and Hamiltonian Systems. Springer, Berlin, 1990.
MR 1078018