Previous |  Up |  Next

Article

Keywords:
singular integral; nonisotropic generalized BMO
Summary:
We extend a result of Coifman and Dahlberg [{\it Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem\/}, Proc. Sympos. Pure Math., Vol. 35, pp.\,231--234; Amer. Math. Soc., Providence, 1979] on the characterization of $H^p$ spaces by singular integrals of $\Bbb R^n$ with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if $T_\lambda$ is the family of dilations in $\Bbb R^n$ induced by a matrix with a nonnegative eigenvalue, then there exist $2n$ singular integral operators homogeneous with respect to the dilations $T_\lambda$ that characterize BMO$_\varphi$ under a natural condition on $\varphi$.
References:
[CD] Coifman R., Dahlberg B.: Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem. Proc. Sympos. Pure Math., Vol. 35, pp.231-234; Amer. Math. Soc., Providence, 1979. MR 0545260
[CW] Coifman R., Weiss G.: Analyse harmonique non-conmutative sur certain espaces homogenes. Lecture Notes in Mathematics 242, Springer, Berlin-New York, 1971. MR 0499948
[C] Crescimbeni R.: Singular integral characterization of functions with conditions on the mean oscillation on spaces of homogeneous type. Rev. Un. Mat. Argentina 39 153-171 (1995). MR 1376792 | Zbl 0892.42007
[FS] Fefferman C., Stein E.: $H^p$ spaces of several variables. Acta Math. 129 137-193 (1972). MR 0447953
[G] de Guzmán M.: Real Variable Methods in Fourier Analysis. Mathematics Studies 46, North Holland, Amsterdam, 1981. MR 0596037
[KR] Krasnosel'skii M., Rutickii J.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961. MR 0126722
[MS1] Macías R., Segovia C.: Lipschitz functions on spaces of homogeneous type. Adv. in Math. 33 257-270 (1979). MR 0546295
[MS2] Macías R., Segovia C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. in Math. 33 271-309 (1979). MR 0546296
[V] Viviani B.: An atomic decomposition of the predual of ${BMO} (\rho)$. Rev. Mat. Iberoamericana 3 3-4 401-425 (1987). MR 0996824 | Zbl 0665.46022
Partner of
EuDML logo