Article
Keywords:
strongly bounded groups; existentially closed groups
Summary:
Let $G$ be a non-trivial algebraically closed group and $X$ be a subset of $G$ generating $G$ in infinitely many steps. We give a construction of a binary tree associated with $(G,X)$. Using this we show that if $G$ is $\omega_1$-existentially closed then it is strongly bounded.
References:
[1] Bergman G.:
Generating infinite symmetric groups. Bull. London Math. Soc. 38 (2006), 429-440.
MR 2239037 |
Zbl 1103.20003
[2] de Cornulier Y.:
Strongly bounded groups and infinite powers of finite groups. Comm. Algebra 34 (2006), 2337-2345.
MR 2240370 |
Zbl 1125.20023
[3] de la Harpe P., Valette A.:
La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175, SMF, 1989.
Zbl 0759.22001
[5] Hodges W., Hodkinson I., Lascar D., Shelah S.:
The small index property for $ømega$-stable $ømega$-categorical structures and for the random graph. J. London Math. Soc. (2) 48 (1993), 204-218.
MR 1231710 |
Zbl 0788.03039
[7] Kechris A., Rosendal Ch.:
Turbulence, amalgamation and generic automorphisms of homogeneous structures. to appear in Proc. London Math. Soc. (arXiv:math.LO/0409567 v3 18 Oct 2004).
MR 2308230 |
Zbl 1118.03042
[8] Macintyre A.:
Model completeness. in: Handbook of Mathematical Logic (edited by Jon Barwise), North-Holland, Amsterdam, 1977, pp.139-180.
MR 0457132 |
Zbl 0317.02065
[10] Ziegler M.:
Algebraisch abgeschlossene Gruppen. in: World Problems II (edited by S. Adian et al.), North-Holland, 1980, pp.449-576.
MR 0579957 |
Zbl 0451.20001