[1] Birkhoff G.:
Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25 Providence, Rhode Island (1967).
MR 0598630 |
Zbl 0153.02501
[3] Boros Z., Száz Á.: Infimum and supremum completeness properties of ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen 2004/4 1-6.
[4] Boros Z., Száz Á.:
Finite and conditional completeness properties of generalized ordered sets. Rostock. Math. Kolloq. 59 (2005), 75-86.
MR 2169501 |
Zbl 1076.06003
[5] Davey B.A., Priestley H.A.:
Introduction to Lattices and Order. Cambridge University Press Cambridge (2002).
MR 1902334 |
Zbl 1002.06001
[7] Pataki G.:
On the extensions, refinements and modifications of relators. Math. Balkanica (N.S.) 15 (2001), 155-186.
MR 1882531 |
Zbl 1042.08001
[9] Száz Á.: Structures derivable from relators. Singularité 3 (1992), 14-30.
[10] Száz Á.: Refinements of relators. Tech. Rep., Inst. Math., Univ. Debrecen 1993/76 1-19.
[11] Száz Á.:
Upper and lower bounds in relator spaces. Serdica Math. J. 29 (2003), 239-270.
MR 2017088
[12] Száz Á.: Lower and upper bounds in ordered sets without axioms. Tech. Rep., Inst. Math., Univ. Debrecen 2004/1 1-11.
[13] Száz Á.: The importance of reflexivity, transitivity, antisymmetry and totality in generalized ordered sets. Tech. Rep., Inst. Math., Univ. Debrecen 2004/2 1-15.
[14] Száz Á.: Galois-type connections and closure operations on preordered sets. Tech. Rep., Inst. Math., Univ. Debrecen 2005/1 1-28.
[15] Száz Á.: Galois-type connections on power sets and their applications to relators. Tech. Rep., Inst. Math., Univ. Debrecen 2005/2 1-38.