[1] Assani I.:
A note on the equation $y=(I-T)x$ in $L^{1}$. Illinois J. Math. 43 (1999), 540-541.
MR 1700608
[2] Browder F.E.:
On the iteration of transformations in non-compact minimal dynamical systems. Proc. Amer. Math. Soc. 9 (1958), 773-780.
MR 0096975 |
Zbl 0092.12602
[3] Diestel J., Uhr J.J., Jr.:
Vector Measures. Amer. Math. Soc., Providence, 1977.
MR 0453964
[4] Fonf V., Lin M., Rubinov A.:
On the uniform ergodic theorem in Banach spaces that do not contain duals. Studia Math. 121 (1996), 67-85.
MR 1414895 |
Zbl 0861.47006
[5] Gottschalk W.H., Hedlund G.A.:
Topological Dynamics. Amer. Math. Soc. Colloq. Publ. 36, Amer. Math. Soc., Providence, 1955.
MR 0074810 |
Zbl 0067.15204
[6] Krengel U., Lin M.:
On the range of the generator of a Markovian semigroup. Math. Z. 185 (1984), 553-565.
MR 0733775 |
Zbl 0525.60080
[7] Li Y.-C., Sato R., Shaw S.-Y.:
Boundedness and growth orders of means of discrete and continuous semigroups of operators. preprint.
MR 2410881 |
Zbl 1151.47048
[8] Lin M., Sine R.:
Ergodic theory and the functional equation $(I-T)x=y$. J. Operator Theory 10 (1983), 153-166.
MR 0715565 |
Zbl 0553.47006
[9] Pazy A.:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.
MR 0710486 |
Zbl 0516.47023
[10] Sato R.:
Solvability of the functional equation $f=(T-I)h$ for vector-valued functions. Colloq. Math. 99 (2004), 253-265.
MR 2079330 |
Zbl 1072.47010
[12] Shaw S.-Y., Li Y.-C.:
On solvability of $Ax=y$, approximate solutions, and uniform ergodicity. Rend. Circ. Mat. Palermo (2) Suppl. 2002, no. 68, part II, 805-819.
MR 1975488 |
Zbl 1050.47013
[14] Travis C.C., Webb G.F.:
Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.
MR 0499581 |
Zbl 0388.34039