Previous |  Up |  Next

Article

Keywords:
three-space property type theorems; permanence results
Summary:
Using some known lifting theorems we present three-space property type and permanence results; some of them seem to be new, whereas other are improvements of known facts.
References:
[1] Diestel J.: A survey of results related to Dunford-Pettis property. Contemp. Math., vol 2, Amer. Math. Soc., Providence, R.I., 1980, pp.15-60. MR 0621850
[2] Diestel J.: Sequences and Series in Banach Spaces. Graduate Texts in Math. 92, Springer, New York, 1984. MR 0737004
[3] Diestel J., Morrison T.J.: The Radon-Nikodym Property for the space of operators. Math. Nachr. 92 (1979), 7-12. MR 0563569 | Zbl 0444.46021
[4] Emmanuele G.: The (BD) property in $L^1(\mu,E)$. Indiana Univ. Math. J. 36.1 (1987), 229-230. MR 0877000
[5] Emmanuele G.: On the Banach spaces with the Property $(V^*)$ of Pelczynski, II. Ann. Mat. Pura Appl. 160 (1991), 163-170. MR 1163206 | Zbl 0759.46018
[6] Emmanuele G.: Some more Banach spaces with the (NRNP). Le Matematiche (Catania) 48 (1993), 213-218. MR 1320664 | Zbl 0828.46008
[7] Emmanuele G., Rao T.S.S.R.K.: Spaces of Bochner integrable functions and spaces of representable operators as ${\Cal U}$-ideals. Quart. J. Math. Oxford 48 (1997), 467-478. MR 1604823
[8] Freedman W.: An Alternative Dunford-Pettis Property. Studia Math. 125 (1997), 143-159. MR 1455629 | Zbl 0897.46009
[9] Godefroy G., Saab P.: Quelques espaces de Banach ayant les propriétés $(V)$ ou $(V^*)$ de A. Pelcynski. C.R. Acad. Sci. Paris 303 (1986), 503-506. MR 0865871 | Zbl 0602.46014
[10] Gonzalez M., Onieva V.M.: Lifting results for sequences in Banach spaces. Math. Proc. Cambridge Phil. Soc. 105 (1989), 117-121. MR 0966145 | Zbl 0633.46025
[11] Grothendieck A.: Sur les applications faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129-173. MR 0058866
[12] Harmand P., Werner D., Werner W.: M-ideals in Banach Spaces and Banach Algebras. Lectures Notes in Math. 1547, Springer, Berlin, 1993. MR 1238713 | Zbl 0789.46011
[13] Kalton N.J., Pelczynski A.: Kernels of surjections from ${\Cal L}_1$-spaces with an application to Sidon sets. Math. Ann. 309 (1997), 135-158. MR 1467651 | Zbl 0901.46008
[14] Kaufman R., Petrakis M., Riddle L.H., Uhl J.J.: Nearly representable operators. Trans. Amer. Math. Soc. 312 (1989), 315-333. MR 0951887 | Zbl 0673.47016
[15] Leung D.H.: A Gelfand-Phillips Property with respect to the Weak Topology. Math. Nachr. 149 (1990), 177-181. MR 1124803 | Zbl 0765.46007
[16] Li D.: Lifting Properties for Some Quotients of $L^1$-Spaces and Other Spaces $L$-Summand in Their Bidual. Math. Z. 199 (1988), 321-329. MR 0961814
[17] Lohman R.H.: A note on Banach spaces containing $\ell_1$. Canad. Math. Bull. 19 (1976), 365-367. MR 0430748 | Zbl 0342.46006
[18] Megginson R.E.: An introduction to Banach Space Theory. Graduate Texts in Mathematics, 183, Springer, New York, 1998. MR 1650235 | Zbl 0910.46008
[19] Morrison T.J.: Functional Analysis, An Introduction to Banach Space Theory. Wiley & Sons, New York, 2001. MR 1885114 | Zbl 1005.46004
[20] Pelczynski A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Polish Acad. Sci. 10 (1962), 641-648. MR 0149295 | Zbl 0107.32504
[21] Randrianantoanina N.: Radon-Nikodym Properties for Spaces of Compact Operators. Rev. Roumanie Math. Pures Appl. 41 (1996), 119-131. MR 1404645 | Zbl 0858.46018
[22] Talagrand M.: Weakly Cauchy sequences in $L^1(E)$. Amer. J. Math. 106 (1984), 703-724. MR 0745148
[23] Talagrand M.: Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?. Proc. Amer. Math. Soc. 90 (1984), 285-288. MR 0727251 | Zbl 0534.46017
Partner of
EuDML logo