Previous |  Up |  Next

Article

Keywords:
separable metric space; sequentially-quotient ($\pi$; compact) mapping; point-star $sn$-network; $cs*$-cover
Summary:
In this paper, we prove that a space $X$ is a sequentially-quotient $\pi$-image of a metric space if and only if $X$ has a point-star $sn$-network consisting of $cs^*$-covers. By this result, we prove that a space $X$ is a sequentially-quotient $\pi$-image of a separable metric space if and only if $X$ has a countable $sn$-network, if and only if $X$ is a sequentially-quotient compact image of a separable metric space; this answers a question raised by Shou Lin affirmatively. We also obtain some results on spaces with countable $sn$-networks.
References:
[1] Engelking R.: General Topology. Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[2] Foged L.: Characterizations of $\aleph$-spaces. Pacific J. Math. 110 (1984), 59-63. MR 0722737 | Zbl 0542.54030
[3] Franklin S.P.: Spaces in which sequence suffice. Fund. Math. 57 (1965), 107-115. MR 0180954
[4] Ge Y.: On $sn$-metrizable spaces. Acta Math. Sinica 45 (2002), 355-360 (in Chinese). MR 1928146 | Zbl 1010.54027
[5] Gruenhage G.: Generalized metric spaces. in: K. Kunen and J.E. Vaughan, Eds., Handbook of Set-Theoretic Topology, Amsterdam, North-Holland, pp.423-501. MR 0776629 | Zbl 0794.54034
[6] Lin S.: On normal separable $\aleph$-space. Questions Answers Gen. Topology 5 (1987), 249-254. MR 0917881
[7] Lin S.: A survey of the theory of $\aleph$-space. Questions Answers Gen. Topology 8 (1990), 405-419. MR 1065288
[8] Lin S.: Generalized Metric Spaces and Mappings. Chinese Science Press, Beijing, 1995 (in Chinese). MR 1375020
[9] Lin S.: A note on the Arens' spaces and sequential fan. Topology Appl. 81 (1997), 185-196. MR 1485766
[10] Lin S., Yan P.: Sequence-covering maps of metric spaces. Topology Appl. 109 (2001), 301-314. MR 1807392 | Zbl 0966.54012
[11] Lin S., Yan P.: On sequence-covering compact mappings. Acta Math. Sinica 44 (2001), 175-182 (in Chinese). MR 1819992 | Zbl 1005.54031
[12] Lin S.: Point-star networks and $\pi$-mappings. Selected Papers of Chinese Topology Symposium, Chinese Fuzhou Teachers University Publ., Chinese Fuzhou, 2001 (in Chinese).
[13] Michael E.A.: $\aleph_0$-spaces. J. Math. Mech. 15 (1966), 983-1002. MR 0206907
[14] O'Meara P.: A new class of topological spaces. Univ. of Alberta Dissertation, 1966.
[15] O'Meara P.: On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189. MR 0276919 | Zbl 0214.21105
[16] Ponomarev V.I.: Axioms of countability and continuous mappings. Bull. Pol. Acad. Math. 8 (1960), 127-133 (in Russian). MR 0116314
[17] Tanaka Y.: $\sigma$-Hereditarily closure-preserving $k$-networks and $g$-metrizability. Proc. Amer. Math. Soc. 112 (1991), 283-290. MR 1049850 | Zbl 0770.54031
[18] Tanaka Y.: Theory of $k$-networks. Questions Answers Gen. Topology 12 (1994), 139-164. MR 1288740 | Zbl 0833.54015
Partner of
EuDML logo