[3] Franklin S.P.:
Spaces in which sequence suffice. Fund. Math. 57 (1965), 107-115.
MR 0180954
[5] Gruenhage G.:
Generalized metric spaces. in: K. Kunen and J.E. Vaughan, Eds., Handbook of Set-Theoretic Topology, Amsterdam, North-Holland, pp.423-501.
MR 0776629 |
Zbl 0794.54034
[6] Lin S.:
On normal separable $\aleph$-space. Questions Answers Gen. Topology 5 (1987), 249-254.
MR 0917881
[7] Lin S.:
A survey of the theory of $\aleph$-space. Questions Answers Gen. Topology 8 (1990), 405-419.
MR 1065288
[8] Lin S.:
Generalized Metric Spaces and Mappings. Chinese Science Press, Beijing, 1995 (in Chinese).
MR 1375020
[9] Lin S.:
A note on the Arens' spaces and sequential fan. Topology Appl. 81 (1997), 185-196.
MR 1485766
[10] Lin S., Yan P.:
Sequence-covering maps of metric spaces. Topology Appl. 109 (2001), 301-314.
MR 1807392 |
Zbl 0966.54012
[11] Lin S., Yan P.:
On sequence-covering compact mappings. Acta Math. Sinica 44 (2001), 175-182 (in Chinese).
MR 1819992 |
Zbl 1005.54031
[12] Lin S.: Point-star networks and $\pi$-mappings. Selected Papers of Chinese Topology Symposium, Chinese Fuzhou Teachers University Publ., Chinese Fuzhou, 2001 (in Chinese).
[13] Michael E.A.:
$\aleph_0$-spaces. J. Math. Mech. 15 (1966), 983-1002.
MR 0206907
[14] O'Meara P.: A new class of topological spaces. Univ. of Alberta Dissertation, 1966.
[15] O'Meara P.:
On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189.
MR 0276919 |
Zbl 0214.21105
[16] Ponomarev V.I.:
Axioms of countability and continuous mappings. Bull. Pol. Acad. Math. 8 (1960), 127-133 (in Russian).
MR 0116314
[17] Tanaka Y.:
$\sigma$-Hereditarily closure-preserving $k$-networks and $g$-metrizability. Proc. Amer. Math. Soc. 112 (1991), 283-290.
MR 1049850 |
Zbl 0770.54031