Previous |  Up |  Next

Article

Keywords:
sequences; power graphs; semigroups
Summary:
Research on combinatorial properties of sequences in groups and semigroups originates from Bernhard Neumann's theorem answering a question of Paul Erd"{o}s. For results on related combinatorial properties of sequences in semigroups we refer to the book [3]. In 2000 the authors introduced a new combinatorial property and described all groups satisfying it. The present paper extends this result to all semigroups.
References:
[1] Chartland G., Lesniak L.: Graphs and Digraphs. Chapman & Hall, London, 1996. MR 1408678
[2] Graham R.L.: Rudiments of Ramsey Theory. Amer. Math. Soc., Providence, R.I., 1981. MR 0608630 | Zbl 0555.05051
[3] de Luca A., Varricchio S.: Regularity and finiteness conditions. Handbook of Formal Languages, Vol. 1, Eds. G. Rosenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, 747-810. MR 1470003
[4] de Luca A., Varricchio S.: Finiteness and Regularity in Semigroups and Formal Languages. Monographs in Theoretical Computer Science, Springer, Berlin, 1998. Zbl 0935.68056
[5] Howie J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford, 1995. MR 1455373 | Zbl 0835.20077
[6] Justin J., Pirillo G.: On some questions and conjectures in combinatorial semigroup theory. Southeast Asian Bull. Math. 18 (1994), 91-104. MR 1319315
[7] Kelarev A.V.: Combinatorial properties of sequences in groups and semigroups. {Combinatorics, Complexity and Logic}, Eds. D.S. Bridge, C.S. Calude, J. Gibbons, S. Reeves, I.H. Witten, (Springer Ser. Discrete Math. Theor. Comput. Soc.), Springer-Verlag, Singapore, 1997, pp289-2983. MR 1647316 | Zbl 0914.68155
[8] Kelarev A.V.: Ring Constructions and Applications. World Scientific, 2002. MR 1875643 | Zbl 0999.16036
[9] Kelarev A.V.: Graph Algebras and Automata. Marcel Dekker, 2003. MR 2064147 | Zbl 1070.68097
[10] Kelarev A.V., Quinn S.J.: A combinatorial property and power graphs of groups. Contrib. General Algebra 12, 58. Arbeitstagung Allgemeine Algebra (Vienna University of Technology, June 3-6, 1999) Eds. D. Dorninger, G. Eigenthaler, M. Goldstern, H.K. Kaiser, W. More, W.B. Mueller, Springer-Verlag, 2000, pp.229-235. MR 1777663 | Zbl 0966.05040
[11] Kelarev A.V., Quinn S.J.: A combinatorial property of Cayley graphs and semigroups. Semigroup Forum 66 (2003), 89-96. MR 1939667
[12] Kelarev A.V., Quinn S.J.: Directed graphs and combinatorial properties of semigroups. J. Algebra 251 (2002), 1 16-26. MR 1900273 | Zbl 1005.20043
[13] Kelarev A.V., Quinn S.J.: Power graphs and semigroups of matrices. Bull. Austral. Math. Soc. 63 (2001), 341-344. MR 1823720 | Zbl 1043.20042
[14] Lothair M.: Combinatorics on Words. Addison-Wesley, Tokyo, 1982. MR 0675953
[15] Neumann B.H.: A problem of Paul Erdös on groups. J. Austral. Math. Soc. 21 (1976), 467-472. MR 0419283 | Zbl 0333.05110
[16] Pin J.-E.: Syntactic semigroups. Handbook of Formal Languages. Vol. 1. Word, Language, Grammar. Eds. G. Rozenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, pp.679-746. MR 1470002
[17] Robinson D.J.S.: A Course in the Theory of Groups. Springer, New-York, Berlin, 1982. MR 0648604 | Zbl 0836.20001
[18] Shevrin L.N., Ovsyannikov A.J.: Semigroups and their Subsemigroup Lattices. Kluwer, Dordrecht, 1996. MR 1420413 | Zbl 0858.20054
Partner of
EuDML logo