[1] Ambrosetti A., Hess P.:
Positive solutions of asymptotically linear elliptic eigenvalue problems. J. Math. Anal. Appl. 73 (2) (1980), 411-422.
MR 0563992 |
Zbl 0433.35026
[2] Almira J.M., Del Toro N.: Some remarks on certains semilinear problems with nonlinearities depending on the derivative. Electron. J. Differential Equations 2003 (2003), 18 1-11.
[3] Anane A., Chakrone O., Gossez J.P.:
Spectre d'ordre supérieur et problèmes de non-résonance. C.R. Acad. Sci. Paris 325 Série I (1997), 33-36.
MR 1461393 |
Zbl 0880.35083
[4] Arcoya D., Gámez J.L.:
Bifurcation theory and related problems: anti-maximum principle and resonance. Comm. Partial Differential Equations 26 9-10 (2001), 1879-1911.
MR 1865948 |
Zbl 1086.35010
[5] Brezis H., Kato T.:
Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. IX, 58 (1979), 137-151.
MR 0539217 |
Zbl 0408.35025
[6] Ca nada A.:
Nonselfadjoint semilinear elliptic boundary value problems. Ann. Mat. Pura Appl. CXLVIII (1987), 237-250.
MR 0932766
[7] Ca nada A., Drábek P.:
On semilinear problems with nonlinearities depending only on derivatives SIAM J. Math. Anal. 27 (1996), 543-557.
MR 1377488
[8] Coifman R.R., Fefferman C.L.:
Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241-250.
MR 0358205 |
Zbl 0291.44007
[9] Drábek P., Girg P., Roca F.:
Remarks on the range properties of certain semilinear problems of Landesman-Lazer type. J. Math. Anal. Appl. 257 (2001), 131-140.
MR 1824670 |
Zbl 0993.34012
[10] Drábek P., Nicolosi F.:
Semilinear boundary value problems at resonance with general nonlinearities. Differential Integral Equations 5 -2 (1992), 339-355.
MR 1148221
[11] De Figuereido D.G., Lions P.L., Nussbaum R.D.:
A priori estimates and existence of positive solutions for semi-linear elliptic equations. J. Math. Pures Appl. 61 (1982), 41-63.
MR 0664341
[12] Garofalo N., Lin F.H.:
Unique continuation for elliptic operators: a geometric-variational approach. Comm. Pure Appl. Math. XL (1987), 347-366.
MR 0882069 |
Zbl 0674.35007
[13] Gidas B., Ni W.M., Nirenberg L.:
Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209-243.
MR 0544879 |
Zbl 0425.35020
[14] Gilbarg D., Trudinger N.:
Elliptic Partial Differential Equations of Second Order. Springer, 1983.
MR 0737190 |
Zbl 1042.35002
[15] Girg P.:
Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative. Electron. J. Differential Equations 63 (2000), 1-28.
MR 1799793 |
Zbl 0974.34018
[16] Habets P., Sanchez L.:
A two-point problem with nonlinearity depending only on the derivative. SIAM J. Math. Anal. 28 (1997), 1205-1211.
MR 1466677 |
Zbl 0886.34015
[17] Kannan R., Nagle R.K., Pothoven K.L.:
Remarks on the existence of solutions of $x''+x+\arctan (x')=p(t)$; $x(0)=x(\pi)=0$. Nonlinear Anal. 22 (1994), 793-796.
MR 1270170 |
Zbl 0802.34021
[18] Landesman E.M., Lazer A.C.:
Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623.
MR 0267269 |
Zbl 0193.39203
[19] Leray J., Schauder J.:
Topologie et équations fonctionelles. Ann. Scient. Éc. Norm. Sup. 51 (1934), 45-78.
MR 1509338
[20] Mawhin J.:
Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives. Acta Math. Inform. Univ. Ostraviensis 2 (1994), 61-69.
MR 1309064 |
Zbl 0853.34021
[21] Mawhin J., Schmitt K.:
Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Results Math. 14 (1988), 138-146.
MR 0956010 |
Zbl 0780.35043
[22] Muckenhoupt B.:
Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226.
MR 0293384 |
Zbl 0236.26016
[23] Nagle R.K., Pothoven K., Singkofer K.:
Nonlinear elliptic equations at resonance where the nonlinearity depends essentially on the derivatives J. Diff. Equations. 38 (1980), 210-225.
MR 0597801
[24] Nussbaum R.:
Uniqueness and nonuniqueness for periodics solutions of $x'(t)=-g(x(t-1))$. J. Differential Equations 34 (1979), 24-54.
MR 0549582
[25] Rabinowitz P.H.:
On bifurcation from infinity. J. Differential Equations 14 (1973), 462-475.
MR 0328705 |
Zbl 0272.35017
[26] Struwe M.:
Variational Methods. Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, 1990.
MR 1078018