[1] Balcar B., Vojtáš P.:
Refining systems on Boolean algebras. in: Set Theory and Hierarchy Theory, V (Proc. Third Conf., Bierutowice, 1976), Lecture Notes in Math. 619, Springer, Berlin, 1977, pp.45-58; MR 58 #16445.
MR 0498304
[2] Balcar B., Simon P.:
Disjoint refinement. in: Handbook of Boolean Algebras, Vol. 2 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989, pp.333-388.
MR 0991597
[5] Kechris A.S.:
Classical Descriptive Set Theory. Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995; MR 96e:03057.
MR 1321597 |
Zbl 0819.04002
[6] Koppelberg S.:
Handbook of Boolean Algebras. Vol. 1 (J.D. Monk and R. Bonnet, Eds.), North-Holland, Amsterdam, 1989; MR 90k:06003.
MR 0991565 |
Zbl 0671.06001
[7] Marczewski (Szpilrajn) E.:
Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles. Fund. Math. 24 (1935), 17-34; Zbl. 0010.19901.
DOI 10.4064/fm-24-1-17-34
[8] Miller A.W.:
Covering $2^ømega$ with $ømega_1$ disjoint closed sets. The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Stud. Logic Foundations Math. 101 (J. Barwise, H.J. Keisler, and K. Kunen, Eds.), North-Holland, Amsterdam, 1980, pp.415-421; MR 82k:03083.
DOI 10.1016/S0049-237X(08)71271-0 |
MR 0591893
[9] Newelski L.:
On partitions of the real line into compact sets. J. Symbolic Logic 52 (1997), 2 353-359; MR 88k:03107.
DOI 10.2307/2274384 |
MR 0890442
[10] Rosłanowski A., Shelah S.:
More forcing notions imply diamond. Arch. Math. Logic 35 (1996), 5-6 299-313; MR 97j:03098.
MR 1420260
[11] Simon P.:
Sacks forcing collapses $\frak c$ to $\frak b$. Comment. Math. Univ. Carolinae 34 (1993), 4 707-710; MR 94m:03084.
MR 1263799
[12] Vaughan J.E.:
Small uncountable cardinals and topology. in: Open Problems of Topology (J. van Mill and G.M. Reed, Eds.), North-Holland, Amsterdam, 1990, pp.195-218.
MR 1078647