Previous |  Up |  Next

Article

Keywords:
pronormal subgroups; transitive relations
Summary:
This article is dedicated to soluble groups, in which pronormality is a transitive relation. Complete description of such groups is obtained.
References:
[AK] Abramovskii I.N., Kargapolov M.I.: Finite groups with the property of transitivity for normal subgroups. Uspekhi Mat. Nauk 13 (1958), 232-243.
[B] Borevich Z.I.: Polynormal subgroups. Darstellungstheorietage (Erfurt, 1992), pp.7-19, Sitzungsber. Mat.-Naturwiss. KI., 4 Acad. Gemein. Wiss. Erfurt, Erfurt, 1992. MR 1225383 | Zbl 0807.20026
[BB] Ba M.S., Borevich Z.I.: On arrangement of intermediate subgroups. Rings and Linear Groups, Kubansk. Univ., Krasnodar, 1988, pp.14-41. MR 1206023
[BT] Best E., Taussky O.: A class of groups. Proc. Roy. Irish Acad. Sect. A 47 (1942), 55-62. MR 0006539 | Zbl 0063.00359
[C] Carter R.W.: Nilpotent self-normalizing subgroups of soluble groups. Math. Z. 75 (1961), 136-139. MR 0123603 | Zbl 0168.27301
[Ce] Celentani M.R.: On groups with many pronormal subgroups. Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 2 685-691. MR 1150808 | Zbl 0807.20033
[CD] Celentani M.R., Dardano U.: Some sensitivity conditions for infinite groups. Rend. Mat. Appl. (7) 12 (1992), 4 997-1012. MR 1218600 | Zbl 0774.20017
[deGV] De Giovanni F., Vincenzi G.: Groups satisfying the minimal condition on non-pronormal subgroups. Boll. Un. Mat. Ital. A (7) 9 (1995), 185-194. MR 1324619 | Zbl 0837.20040
[deFKS] De Falco M., Kurdachenko L.A., Subbotin I.Ya.: Groups with only abnormal and subnormal subgroups. Atti Sem. Mat. Fis. Univ. Modena 46 2 (1998), 435-442. MR 1665935 | Zbl 0918.20017
[E1] Emaldi E.: Sui T-gruppi loclmente finiti. Atti Istit. Lombardo (Rend. Sci.) A 121 (1987), 55-60.
[E2] Emaldi E.: Confronto di alcule classi gruppali. Riv. Mat. Pura Appl. 5 (1989), 33-39.
[F] Fatahi A.: Groups with only normal and abnormal subgroups. J. Algebra 28 (1974), 15-19. MR 0335628
[FdeG] Fransiosi S., De Giovanni F.: Groups in which every infinite subnormal subgroups is normal. J. Algebra 96 (1985), 566-580. MR 0810546
[G] Gaschutz W.: Gruppen in denen das Normalteilersein transitive ist. J. Reine Angew. Math. 198 (1957), 87-92. MR 0091277
[GK] Gavron P.V., Kolotilina N.Yu.: On subgroups of T-groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 62-65. MR 0618496
[H] Heineken H., Lennox J.C.: Subgroups of finite index in T-groups. Boll. Un. Mat. Ital. B (6) 4 3 (1985), 829-841. MR 0831294 | Zbl 0598.20027
[HL] Heineken H.: Groups with restriction on their infinite subnormal subgroups. Proc. Edinburg Math. Soc. 31 (1988), 231-241. MR 0989756 | Zbl 0644.20020
[KS1] Kuzennyi N.F, Subbotin I.Ya.: Locally soluble groups with the transitive condition for infinite nonabelian normal subgroups. Methods of Investigations of Algebraic and Topologic Structures, Kiev State Pedagogic University, Kiev, 1989, pp.45-52.
[KS2] Kuzennyi N.F, Subbotin I.Ya.: Groups in which all subgroups are pronormal. Ukrain. Mat. Zh. 39 (1987), 325-329; English translation: Ukrainian Math. J. 39 (1987), 251-254. MR 0899498
[KS3] Kuzennyi N.F, Subbotin I.Ya.: Groups with pronormal primary subgroups. Ukrain. Mat. Zh. 41 (1989), 323-327; English translation: Ukrainian Math. J. 41 (1989), 286-289. MR 1001537
[KS4] Kuzennyi N.F, Subbotin I.Ya.: New characterization of locally nilpotent $øverline{IH}$-groups. Ukrain. Mat. Zh. 40 (1988), 322-326; English translation: Ukrainian Math. J. 40 (1988), 274-277. MR 0952119
[KS5] Kuzennyi N.F, Subbotin I.Ya.: On nonsplittable group extensions. Studies of Groups with Restrictions on Subgroups, Inst. of Math. of Acad. Sci. Ukraine, Kiev, 1988, pp.27-33. MR 0988170
[M1] Menegazzo F.: Gruppi nei quail la relazone di quasi-normalita e tranzitiva. Rend. Sem. Mat. Univ. Padova 40 (1968), 347-361. MR 0228584
[M2] Menegazzo F.: Gruppi nei quail la relazone di quasi-normalita e tranzitiva II. Rend. Sem. Mat. Univ. Padova 42 (1969), 389-399. MR 0257225
[Mu] Müller K.H.: Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalizatorgleichen Untergruppen. Rend. Sem. Mat. Univ. Padova 36 (1966), 129-157. MR 0204528
[P] Peng T.A.: Pronormality in finite groups. J. London Math. Soc. (2) 3 (1971), 301-306. MR 0276319 | Zbl 0209.05502
[R1] Robinson D.J.S.: Groups in which normality is a transitive relation. Proc. Cambridge Philos. Soc. 60 (1964), 21-38. MR 0159885 | Zbl 0123.24901
[R2] Robinson D.J.S.: A note on finite groups in which normality is transitive. Proc. Amer. Math. Soc. 19 (1968), 933-937. MR 0230808 | Zbl 0159.31002
[R3] Robinson D.J.S.: Groups which are minimal with respect to normality being transitive. Pacific J. Math. 31 (1969), 777-785. MR 0258943
[R4] Robinson D.J.S.: Groups whose gomomorphic images have a transitive normality relation. Trans. Amer. Math. Soc. 176 (1973), 181-213. MR 0323907
[Ro] Rose J.S.: Finite soluble groups with pronormal system normalizers. Proc. London Math. Soc. (3) 17 (1967), 447-469. MR 0212092 | Zbl 0153.03602
[S1] Subbotin I.Ya.: Groups with pronormal subgroups of proper normal subgroups. in Proceedings of International Conference ``Infinite Groups 1994'', Walter der Gruyter, Berlin, 1995, pp.247-256. MR 1477182 | Zbl 0866.20028
[SK] Subbotin I.Ya, Kuzennyi N.F.: Locally solvable groups in which all infinite subgroups are pronormal. Izv. Vyssh. Ucheb. Zaved. Mat. 11 (1988), 77-79; English translation: Soviet. Math. 32 (1988), no. 11, 126-131. MR 0983287
[V] Vincenzi G.: Groups with dense pronormal subgroups. Ricerche Mat. XL (1991), 75-79. MR 1191887 | Zbl 0754.20011
[V1] Vincenzi G.: Groups satisfying the maximall condition on non-pronormal subgroups. Algebra Colloq. 5:2 (1998), 121-134. MR 1682978
[W] Wood G.J.: On pronormal subgroups of finite soluble groups. Arch. Math. 25 (1974), 578-585. MR 0379660 | Zbl 0301.20011
[Z] Zacher G.: Caratterizzazione dei t-gruppi finite risolubili. Ricerche Mat. 1 (1952), 287-294. MR 0053104
Partner of
EuDML logo