Previous |  Up |  Next

Article

Keywords:
absolute $z$-embedding; absolute $C$-embedding; absolute $C^*$-embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact
Summary:
In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.
References:
[1] Alò R.A., Shapiro H.L.: Normal Topological Spaces. Cambridge University Press, Cambridge, 1974. MR 0390985
[2] Arhangel'skii A.V.: Relative topological properties and relative topological spaces. Topology Appl. 70 (1996), 87-99. MR 1397067 | Zbl 0848.54016
[3] Arhangel'skii A.V., Tartir J.: A characterization of compactness by relative separation property. Questions Answers Gen. Topology 14 (1996), 49-52. MR 1384052
[4] Aull C.E.: Some embeddings related to $C^*$-embeddings. J. Austral. Math. Soc. (Series A) 44 (1988), 88-104. MR 0914406 | Zbl 0653.54015
[5] Aull C.E.: On well-embedding. General Topology and Applications (Middletown, CT, 1988), pp.1-5; Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990. MR 1057621 | Zbl 0721.54009
[6] Bella A., Yaschenko I.V.: Lindelöf property and absolute embeddings. Proc. Amer. Math. Soc. 127 (1999), 907-913. MR 1469399 | Zbl 0907.54003
[7] Blair R.L.: On $\upsilon$-embedded sets in topological spaces. TOPO 72 - General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), pp.46-79; Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974. MR 0358677
[8] Blair R.L., Hager A.W.: Extensions of zero-sets and of real-valued functions. Math. Z. 136 (1974), 41-52. MR 0385793 | Zbl 0264.54011
[9] Doss R.: On uniform spaces with a unique structure. Amer. J. Math. 71 (1949), 19-23. MR 0029153 | Zbl 0032.12202
[10] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[11] Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand, Princeton, 1960. MR 0116199 | Zbl 0327.46040
[12] Hager A.W., Johnson D.G.: A note on certain subalgebras of $C(X)$. Canad. J. Math. 20 (1968), 389-393. MR 0222647
[13] Henriksen M., Johnson D.G.: On the structure of a class of archimedian lattice-ordered algebras. Fund. Math. 50 (1961), 73-94. MR 0133698
[14] Hewitt E.: A note on extensions of continuous functions. An. Acad. Brasil. Ci. 21 (1949), 175-179. MR 0031711
[15] Noble N.: $C$-embedded subsets of products. Proc. Amer. Math. Soc. 31 (1972), 613-614. MR 0284978 | Zbl 0231.54011
[16] Smirnov Y.: Mappings of systems of open sets (in Russian). Mat. Sb. 31 (1952), 152-166. MR 0050263
[17] Terada T.: Note on $z$-, $C^*$-, and $C$-embedding. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A. 13 (1975), 129-132. MR 0391005 | Zbl 0333.54008
[18] Yajima Y.: Characterizations of paracompactness and Lindelöfness by separation property. preprint. MR 1948123
Partner of
EuDML logo