[1] Alò R.A., Shapiro H.L.:
Normal Topological Spaces. Cambridge University Press, Cambridge, 1974.
MR 0390985
[2] Arhangel'skii A.V.:
Relative topological properties and relative topological spaces. Topology Appl. 70 (1996), 87-99.
MR 1397067 |
Zbl 0848.54016
[3] Arhangel'skii A.V., Tartir J.:
A characterization of compactness by relative separation property. Questions Answers Gen. Topology 14 (1996), 49-52.
MR 1384052
[4] Aull C.E.:
Some embeddings related to $C^*$-embeddings. J. Austral. Math. Soc. (Series A) 44 (1988), 88-104.
MR 0914406 |
Zbl 0653.54015
[5] Aull C.E.:
On well-embedding. General Topology and Applications (Middletown, CT, 1988), pp.1-5; Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990.
MR 1057621 |
Zbl 0721.54009
[6] Bella A., Yaschenko I.V.:
Lindelöf property and absolute embeddings. Proc. Amer. Math. Soc. 127 (1999), 907-913.
MR 1469399 |
Zbl 0907.54003
[7] Blair R.L.:
On $\upsilon$-embedded sets in topological spaces. TOPO 72 - General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), pp.46-79; Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974.
MR 0358677
[8] Blair R.L., Hager A.W.:
Extensions of zero-sets and of real-valued functions. Math. Z. 136 (1974), 41-52.
MR 0385793 |
Zbl 0264.54011
[12] Hager A.W., Johnson D.G.:
A note on certain subalgebras of $C(X)$. Canad. J. Math. 20 (1968), 389-393.
MR 0222647
[13] Henriksen M., Johnson D.G.:
On the structure of a class of archimedian lattice-ordered algebras. Fund. Math. 50 (1961), 73-94.
MR 0133698
[14] Hewitt E.:
A note on extensions of continuous functions. An. Acad. Brasil. Ci. 21 (1949), 175-179.
MR 0031711
[16] Smirnov Y.:
Mappings of systems of open sets (in Russian). Mat. Sb. 31 (1952), 152-166.
MR 0050263
[17] Terada T.:
Note on $z$-, $C^*$-, and $C$-embedding. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A. 13 (1975), 129-132.
MR 0391005 |
Zbl 0333.54008
[18] Yajima Y.:
Characterizations of paracompactness and Lindelöfness by separation property. preprint.
MR 1948123