Previous |  Up |  Next

Article

Keywords:
P-; QN-; $\Sigma $-; $\Sigma '$-; $\Sigma ^*$-; $\Sigma _c$-convergence; a space not distinguishing convergences
Summary:
In the present paper we introduce a convergence condition $(\Sigma ')$ and continue the study of ``not distinguish'' for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
References:
[1] Bartoszyński T.: Additivity of measure implies additivity of category. Trans. Amer. Math. Soc. 281 (1984), 209-213. MR 0719666
[2] Bukovský L., Recław I., Repický M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions. Topology Appl. 41 (1991), 25-40. MR 1129696
[3] Bukovský L., Recław I., Repický M.: Spaces not distinguishing convergences of real-valued functions. Topology Appl., to appear.
[4] van Douwen E.K.: The integers and topology. Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.111-167. MR 0776622 | Zbl 0561.54004
[5] Engelking R.: General Topology. Państwowe Wydawnictwo Naukowe, Warszawa, 1977. MR 0500779 | Zbl 0684.54001
[6] Kada M., Kamo S.: New cardinal invariants related to pseudo-Dirichlet sets. preprint, 1996.
[7] Kuratowski K.: Topologie I. PWN, Warsaw, 1958. Zbl 0849.01044
[8] Miller A.W.: Special subsets of the real line. Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.201-233. MR 0776624 | Zbl 0588.54035
[9] Recław I.: Metric spaces not distinguishing pointwise and quasinormal convergence of real functions. Bull. Polish Acad. Sci. Math. 45 (1997), 3 287-289. MR 1477547
Partner of
EuDML logo