[2] Anichini G., Zecca P.:
Multivalued differential equations in Banach spaces. An application in control theory. J. Optim. Theory and Appl. 21 (1977), 477-486.
MR 0440144
[3] Bader R.:
Fixed point theorems for compositions of set-valued maps with single-valued maps. Annales Universitatis Mariae Curie-Skłodowska, Vol. LI.2, Sectio A, Lublin, 1997, pp.29-41.
MR 1666164 |
Zbl 1012.47043
[4] Bader R.:
The periodic problem for semilinear differential inclusions in Banach spaces. Comment. Math. Univ. Carolinae 39 (1998), 671-684.
MR 1715457 |
Zbl 1060.34508
[5] Ben-El-Mechaiekh H., Kryszewski W.:
Equilibria of set-valued maps on nonconvex domains. Trans. Amer. Math. Soc. 349 (1997), 4159-4179.
MR 1401763 |
Zbl 0887.47040
[6] Bothe D.:
Multivalued differential equations on graphs and applications. Ph. D. dissertation, Universität Paderborn, 1992.
MR 1148288 |
Zbl 0789.34013
[7] Conti G., Obukhovskii V., Zecca P.:
On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. in: Topology in Nonlinear Analysis, K. Geba and L. Górniewicz (eds.), Polish Academy of Sciences, Institute of Mathematics, Banach Center Publications 35, Warszawa, 1996, pp.159-169.
MR 1448435
[8] Deimling K.:
Periodic solutions of differential equations in Banach spaces. Manuscripta Math. 24 (1978), 31-44.
MR 0499551 |
Zbl 0373.34032
[10] Diestel J.:
Remarks on weak compactness in $L_1(\mu,X)$. Glasgow Math. J. 18 (1977), 87-91.
Zbl 0342.46020
[11] Górniewicz L.:
Topological approach to differential inclusions. in: Topological methods in differential equations and inclusions, A. Granas and M. Frigon (eds.), NATO ASI Series C 472, Kluwer Academic Publishers, 1995, pp.129-190.
MR 1368672
[12] Hu S., Papageorgiou N.S.:
On the topological regularity of the solution set of differential inclusions with constraints. J. Differential Equations 107 (1994), 280-290.
MR 1264523 |
Zbl 0796.34017
[13] Hyman D.M.:
On decreasing sequences of compact absolute retracts. Fund. Math. 64 (1969), 91-97.
MR 0253303 |
Zbl 0174.25804
[14] Kamenskii M., Obukhovskii V., Zecca P.:
Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter, to appear.
MR 1831201 |
Zbl 0988.34001
[15] Martin R.:
Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York, 1976.
MR 0492671 |
Zbl 0333.47023
[16] Pavel N.:
Invariant sets for a class of semi-linear equations of evolution. Nonlinear Anal. 1 (1977), 187-196.
MR 0637080 |
Zbl 0344.45001
[17] Prüss, J.:
Periodic solutions of semilinear evolution equations. Nonlinear Anal. 3 (1979), 601-612.
MR 0541871
[18] Shuzhong Shi.:
Viability theorems for a class of differential-operator inclusions. J. Differential Equations 79 (1989), 232-257.
MR 1000688 |
Zbl 0694.34011