Previous |  Up |  Next

Article

Title: Hopf algebras of smooth functions on compact Lie groups (English)
Author: Farkas, Eva C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 651-661
.
Category: math
.
Summary: A $C^{\infty}$-Hopf algebra is a $C^{\infty}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty}$-Hopf algebras which are given by the algebra $C^{\infty}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras. (English)
Keyword: $C^{\infty}$-Hopf-algebras
Keyword: algebras of smooth functions on compact Lie groups
Keyword: duality theorem
MSC: 16W30
MSC: 22D35
MSC: 22E15
MSC: 46E25
MSC: 46J15
idZBL: Zbl 1051.16021
idMR: MR1800176
.
Date available: 2009-01-08T19:06:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119199
.
Reference: [1] Abe E.: Hopf Algebras.Cambridge University Press, Cambridge, 1980. Zbl 0476.16008, MR 0594432
Reference: [2] Bourbaki N.: Groupes et algèbres de Lie.Hermann, Paris, 1972. Zbl 1123.22005, MR 0573068
Reference: [3] Cooper J.B., Michor P.: Duality of compactological and locally compact groups.Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. MR 0507225
Reference: [4] Frölicher A., Kriegl A.: Linear Spaces and Differentiation Theory.J. Wiley, Chichester, 1988. MR 0961256
Reference: [5] Hochschild G.: The Structure of Lie Groups.Holden-Day, 1965. Zbl 0131.02702, MR 0207883
Reference: [6] Jarchow H.: Locally Convex Spaces.Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257
Reference: [7] Kainz G., Kriegl A., Michor P.: $C^{\infty}$-algebras from the functional analytic view.J. of Pure and Applied Algebra 46 (1987), 89-107. MR 0894394
Reference: [8] Kriegl A., Michor P.W.: The convenient setting of global analysis.Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. Zbl 0889.58001, MR 1471480
Reference: [9] Kriegl A., Michor P.W., Schachermayer W.: Characters on algebras of smooth functions.Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. Zbl 0691.58020, MR 1032327
Reference: [10] Michor P.W., Vanžura J.: Characterizing algebras of smooth functions on manifolds.Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. MR 1426917
Reference: [11] Milnor J.W., Stasheff J.D.: Characteristic classes.Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. Zbl 1079.57504, MR 0440554
Reference: [12] Moerdijk I., Reyes G.E.: Models for Smooth Infinitesimal Analysis.Springer, Berlin/Heidelberg/New-York, 1991. Zbl 0715.18001, MR 1083355
Reference: [13] Takahashi S.: A characterization of group rings as a special class of Hopf algebras.Canad. Math. Bull. 8 ,4 (1965), 465-75. Zbl 0143.26705, MR 0184988
Reference: [14] Tannaka T.: Dualität der nicht-kommutativen bikompakten Gruppen.Tohoku Math. J. 53 (1938), 1-12.
Reference: [15] Yosida K.: Functional Analysis.Springer, Berlin/Heidelberg/New-York, 1980. Zbl 0830.46001, MR 0617913
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_1.pdf 235.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo