Article
Keywords:
comtrans algebras; $T$-Hermitian matrices; simple algebras
Summary:
The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.
References:
[1] Chein O., Pflugfelder H.O., Smith J.D.H.:
Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990.
MR 1125806 |
Zbl 0719.20036
[3] Dirac P.A.M.:
The Principles of Quantum Mechanics. Oxford, 1967.
MR 0023198
[4] Saizew G.A.:
Algebraic Problems of Mathematical and Theoretical Physics (in Russian). Moscow, 1974; German translation: Berlin, 1979.
MR 0554236
[5] Shen X.R., Smith J.D.H.:
Simple multilinear algebras, rectangular matrices and Lie algebras. J. Algebra 160 (1993), 424-433.
MR 1244921 |
Zbl 0811.17024
[6] Shen X.R., Smith J.D.H.:
Comtrans algebras and bilinear forms. Arch. Math 59 (1992), 327-333.
MR 1179457 |
Zbl 0739.17010
[7] Shen X.R., Smith J.D.H.:
Representation theorem of comtrans algebras. J. Pure Appl. Algebra 80 (1992), 177-195.
MR 1172725
[8] Shen X.R., Smith J.D.H.:
Simple algebras of hermitian operators. Arch. Math. 65 (1995), 534-539.
MR 1360074 |
Zbl 0853.17021
[9] Smith J.D.H.:
Multilinear algebras and Lie's Theorem for formal n-loops. Arch. Math. 51 (1988), 169-177.
MR 0959394 |
Zbl 0627.22003
[10] Smith J.D.H.:
Comtrans algebras and their physical applications. Banach Center Publ. 28 (1993), 319-326.
MR 1446291 |
Zbl 0811.17025