Previous |  Up |  Next

Article

Keywords:
comtrans algebras; $T$-Hermitian matrices; simple algebras
Summary:
The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.
References:
[1] Chein O., Pflugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990. MR 1125806 | Zbl 0719.20036
[2] Goldberg V.V.: Theory of Multicodimensional $(n+1)$-Webs. Kluwer, Dordrecht, 1988. MR 0998774 | Zbl 0668.53001
[3] Dirac P.A.M.: The Principles of Quantum Mechanics. Oxford, 1967. MR 0023198
[4] Saizew G.A.: Algebraic Problems of Mathematical and Theoretical Physics (in Russian). Moscow, 1974; German translation: Berlin, 1979. MR 0554236
[5] Shen X.R., Smith J.D.H.: Simple multilinear algebras, rectangular matrices and Lie algebras. J. Algebra 160 (1993), 424-433. MR 1244921 | Zbl 0811.17024
[6] Shen X.R., Smith J.D.H.: Comtrans algebras and bilinear forms. Arch. Math 59 (1992), 327-333. MR 1179457 | Zbl 0739.17010
[7] Shen X.R., Smith J.D.H.: Representation theorem of comtrans algebras. J. Pure Appl. Algebra 80 (1992), 177-195. MR 1172725
[8] Shen X.R., Smith J.D.H.: Simple algebras of hermitian operators. Arch. Math. 65 (1995), 534-539. MR 1360074 | Zbl 0853.17021
[9] Smith J.D.H.: Multilinear algebras and Lie's Theorem for formal n-loops. Arch. Math. 51 (1988), 169-177. MR 0959394 | Zbl 0627.22003
[10] Smith J.D.H.: Comtrans algebras and their physical applications. Banach Center Publ. 28 (1993), 319-326. MR 1446291 | Zbl 0811.17025
Partner of
EuDML logo