Previous |  Up |  Next

Article

Keywords:
sequential; Fréchet; strongly Fréchet topology; product convergence; Antoine convergence; continuous convergence
Summary:
The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.
References:
[1] Bourdaud G.: Espaces d'Antoine et semi-espaces d'Antoine. Cahiers de Topologies et Géométrie Différentielle 16 107-133 (1975). MR 0394529 | Zbl 0315.54005
[2] Choquet G.: Convergences. Ann. Inst. Fourier 23 55-112 (1947). MR 0025716
[3] Dolecki S.: Convergence-theoretic approach to quotient quest. Topology Appl. 73 1-21 (1996). MR 1413721 | Zbl 0862.54001
[4] Dolecki S., Mynard F.: Convergence theoretic mechanisms behind product theorems. to appear in Topology Appl. MR 1780899 | Zbl 0953.54002
[5] Engelking R.: Topology. PWN, 1977. Zbl 0932.01059
[6] Michael E.: A quintuple quotient quest. Gen. Topology Appl. 2 91-138 (1972). MR 0309045 | Zbl 0238.54009
[7] Michael E.: Local compactness and cartesian product of quotient maps and $k$-spaces. Ann. Inst. Fourier (Grenoble) 19 281-286 (1968). MR 0244943
[8] Mynard F.: Coreflectively modified continuous duality applied to classical product theorems. to appear. MR 1890032 | Zbl 1007.54008
[9] Olson R.C.: Biquotient maps, countably bisequential spaces and related topics. Topology Appl. 4 1-28 (1974). MR 0365463
[10] Tanaka Y.: Products of sequential spaces. Proc. Amer. Math. Soc. 54 371-375 (1976). MR 0397665 | Zbl 0292.54025
[11] Tanaka Y.: Necessary and sufficient conditions for products of $k$-spaces. Topology Proc. 14 281-312 (1989). MR 1107729 | Zbl 0727.54012
Partner of
EuDML logo