Article
Keywords:
sequential; Fréchet; strongly Fréchet topology; product convergence; Antoine convergence; continuous convergence
Summary:
The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.
References:
[1] Bourdaud G.:
Espaces d'Antoine et semi-espaces d'Antoine. Cahiers de Topologies et Géométrie Différentielle 16 107-133 (1975).
MR 0394529 |
Zbl 0315.54005
[2] Choquet G.:
Convergences. Ann. Inst. Fourier 23 55-112 (1947).
MR 0025716
[3] Dolecki S.:
Convergence-theoretic approach to quotient quest. Topology Appl. 73 1-21 (1996).
MR 1413721 |
Zbl 0862.54001
[4] Dolecki S., Mynard F.:
Convergence theoretic mechanisms behind product theorems. to appear in Topology Appl.
MR 1780899 |
Zbl 0953.54002
[7] Michael E.:
Local compactness and cartesian product of quotient maps and $k$-spaces. Ann. Inst. Fourier (Grenoble) 19 281-286 (1968).
MR 0244943
[8] Mynard F.:
Coreflectively modified continuous duality applied to classical product theorems. to appear.
MR 1890032 |
Zbl 1007.54008
[9] Olson R.C.:
Biquotient maps, countably bisequential spaces and related topics. Topology Appl. 4 1-28 (1974).
MR 0365463
[11] Tanaka Y.:
Necessary and sufficient conditions for products of $k$-spaces. Topology Proc. 14 281-312 (1989).
MR 1107729 |
Zbl 0727.54012