Previous |  Up |  Next

Article

Title: Generalized $n$-coherence (English)
Author: Jirásko, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 1-7
.
Category: math
.
Summary: In this paper necessary and sufficient conditions for large subdirect products of $n$-flat modules from the category $Gen(Q)$ to be $n$-flat are given. (English)
Keyword: relative finiteness conditions
Keyword: relative coherence
Keyword: large subdirect products of $n$-flat modules
MSC: 16D40
MSC: 16P70
idZBL: Zbl 1041.16001
idMR: MR1756922
.
Date available: 2009-01-08T18:57:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119136
.
Reference: [1] Bican L., Kepka T., Němec P.: Rings, Modules and Preradicals.Marcel Dekker Inc., New York and Basel, 1982. MR 0655412
Reference: [2] Chase S.U.: Direct products of modules.Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260
Reference: [3] Jianlong Chen, Nanqing Ding: On $n$-coherent rings.Comm. Algebra 24 (10) (1996), 3211-3216. MR 1402554
Reference: [4] Colby R.R., Rutter E.A., Jr.: $\prod$-flat and $\prod$-projective modules.Arch. Math. 22 (1971), 246-251. MR 0292881
Reference: [5] Jirásko J.: Large subdirect products of relative flat modules.Conf. Abelian Groups and Modules, Padova, 1994.
Reference: [6] Jirásková H.: Generalized flatness and coherence.Comment. Math. Univ. Carolinae 21 (1980), 293-308. MR 0580684
Reference: [7] Jones M.F.: Coherence relative to a hereditary torsion theory.Comm. Algebra 10 (1982), 719-739. MR 0650869
Reference: [8] Lenzig H.: Endlich präsentierbare Moduln.Arch. Math. 20 (1969), 262-266. MR 0244322
Reference: [9] Loustaunau P.: $\Cal F$-products of injective, flat and projective modules.Comm. Algebra 18 (1990), 3671-3683. Zbl 0727.16002, MR 1068613
Reference: [10] Loustaunau P.: Large subdirect products of projective modules.Comm. Algebra 17 (1989), 197-215. Zbl 0664.16019, MR 0970872
Reference: [11] Oyonarte L., Torrecillas B.: Large subdirect products of flat modules.Comm. Algebra 24 (4) (1996), 1389-1407. Zbl 0845.16003, MR 1380601
Reference: [12] Oyonarte L., Torrecillas B.: Large subdirect products of graded modules.Comm. Algebra 27 (2) (1999), 681-701. Zbl 0923.16035, MR 1671963
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_1.pdf 196.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo