Previous |  Up |  Next

Article

Keywords:
variational methods; elliptic equations; critical growth
Summary:
The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the $N$-Laplacian $$ - \Delta_N u \equiv - \operatorname{div} (|\nabla u|^{N-2} \nabla u) = e(x,u) + h(x) \text{ in } \Omega $$ where $u \in W_0^{1,N}(\Bbb R^{N})$, $\Omega$ is a bounded smooth domain in $\Bbb R^{N}$, $N \geq 2$, $e(x,u)$ is a critical nonlinearity in the sense of the Trudinger-Moser inequality and $h(x) \in (W_0^{1,N})^*$ is a small perturbation.
References:
[1] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Sc. Norm. Sup. Pisa, Series 4 17 (1990), 393-413. MR 1079983 | Zbl 0732.35028
[2] Adimurthi: Some remarks on the Dirichlet problem with critical growth for the $n$-Laplacian. Houston J. Math. 17 (2) (1991), 285-298. MR 1115150 | Zbl 0768.35015
[3] Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381. MR 0370183 | Zbl 0273.49063
[4] Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (3) (1983), 486-490. MR 0699419 | Zbl 0526.46037
[5] Carleson L., Chang S-Y.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110 (1986), 113-127. MR 0878016
[6] Chabrowski J.: On multiple solutions for the nonhomogeneous $p$-Laplacian with a critical Sobolev exponent. Differential Integral Equations 8 (4) (1995), 705-716. MR 1306587 | Zbl 0814.35033
[7] Yinbin Deng, Yi Li: Existence and bifurcation of the positive solutions of a semilinear equation with critical exponent. J. Differential Equations 130 (1996), 179-200. MR 1409029
[8] de Figueiredo D.G., Miyagaki O.H., Ruf B.: Elliptic equations in $\Bbb R^{2}$ with nonlinearities in the critical growth range. Calc. Var. Partial Differential Equations 3 (2) (1995), 139-153. MR 1386960
[9] Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. MR 0346619 | Zbl 0286.49015
[10] Kai-Ching Lin: Extremal functions for Moser's inequality. Trans. Amer. Math. Soc. 348 (7) (1996), 2663-2671. MR 1333394
[11] Lions P.L.: The Concentration Compactness Principle in the Calculus of Variations, part I. Rev. Mat. Iberoamericana 1 (1985), 185-201. MR 0834360
[12] Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (11) (1971), 1077-1092. MR 0301504
[13] Do Ó J.M.B.: Semilinear Dirichlet problems for the $N$-Laplacian in ${\Bbb R}^N$ with nonlinearities in the critical growth range. Differential Integral Equations 9 (5) (1996), 967-979. MR 1392090
[14] Rabinowitz P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, No. 65, AMS, 1986. MR 0845785 | Zbl 0609.58002
[15] Panda R.: On semilinear Neumann problems with critical growth for the $n$-Laplacian. Nonlinear Anal. 26 (1996), 1347-1366. MR 1377667 | Zbl 0854.35045
[16] Tarantello G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (3) (1992), 281-304. MR 1168304 | Zbl 0785.35046
[17] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. Journal of Mathematics and Mechanics 17 (5) (1967), 473-483. MR 0216286 | Zbl 0163.36402
Partner of
EuDML logo