[1] Adimurthi:
Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Sc. Norm. Sup. Pisa, Series 4 17 (1990), 393-413.
MR 1079983 |
Zbl 0732.35028
[2] Adimurthi:
Some remarks on the Dirichlet problem with critical growth for the $n$-Laplacian. Houston J. Math. 17 (2) (1991), 285-298.
MR 1115150 |
Zbl 0768.35015
[3] Ambrosetti A., Rabinowitz P.H.:
Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381.
MR 0370183 |
Zbl 0273.49063
[4] Brezis H., Lieb E.:
A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (3) (1983), 486-490.
MR 0699419 |
Zbl 0526.46037
[5] Carleson L., Chang S-Y.:
On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110 (1986), 113-127.
MR 0878016
[6] Chabrowski J.:
On multiple solutions for the nonhomogeneous $p$-Laplacian with a critical Sobolev exponent. Differential Integral Equations 8 (4) (1995), 705-716.
MR 1306587 |
Zbl 0814.35033
[7] Yinbin Deng, Yi Li:
Existence and bifurcation of the positive solutions of a semilinear equation with critical exponent. J. Differential Equations 130 (1996), 179-200.
MR 1409029
[8] de Figueiredo D.G., Miyagaki O.H., Ruf B.:
Elliptic equations in $\Bbb R^{2}$ with nonlinearities in the critical growth range. Calc. Var. Partial Differential Equations 3 (2) (1995), 139-153.
MR 1386960
[10] Kai-Ching Lin:
Extremal functions for Moser's inequality. Trans. Amer. Math. Soc. 348 (7) (1996), 2663-2671.
MR 1333394
[11] Lions P.L.:
The Concentration Compactness Principle in the Calculus of Variations, part I. Rev. Mat. Iberoamericana 1 (1985), 185-201.
MR 0834360
[12] Moser J.:
A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (11) (1971), 1077-1092.
MR 0301504
[13] Do Ó J.M.B.:
Semilinear Dirichlet problems for the $N$-Laplacian in ${\Bbb R}^N$ with nonlinearities in the critical growth range. Differential Integral Equations 9 (5) (1996), 967-979.
MR 1392090
[14] Rabinowitz P.H.:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, No. 65, AMS, 1986.
MR 0845785 |
Zbl 0609.58002
[15] Panda R.:
On semilinear Neumann problems with critical growth for the $n$-Laplacian. Nonlinear Anal. 26 (1996), 1347-1366.
MR 1377667 |
Zbl 0854.35045
[16] Tarantello G.:
On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (3) (1992), 281-304.
MR 1168304 |
Zbl 0785.35046
[17] Trudinger N.S.:
On imbeddings into Orlicz spaces and some applications. Journal of Mathematics and Mechanics 17 (5) (1967), 473-483.
MR 0216286 |
Zbl 0163.36402