Article
Keywords:
cofinally \v {C}ech complete; paracompact; cofinally complete metric space; perfect mapping
Summary:
We show that a Tychonoff space is the perfect pre-image of a cofinally complete metric space if and only if it is paracompact and cofinally \v {C}ech complete. Further properties of these spaces are discussed. In particular, cofinal \v {C}ech completeness is preserved both by perfect mappings and by continuous open mappings.
References:
[1] Burdick B.S.:
A note on completeness of hyperspaces. General Topology and Applications: Fifth Northeast Conference, eds: Susan Andima et al., Marcel Dekker, 1991, pp.19-24.
MR 1142791 |
Zbl 0766.54008
[2] Corson H.H.:
The determination of paracompactness by uniformities. Amer. J. Math. 80 (1958), 185-190.
MR 0094780 |
Zbl 0080.15803
[3] Császár Á.: Strongly complete, supercomplete and ultracomplete spaces. Mathematical Structures-Computational Mathematics-Mathematical Modelling, Papers dedicated to Prof. L. Iliev's 60th Anniversary, Sofia, 1975, pp.195-202.
[5] Gruenhage G.:
Generalized metric spaces. in Handbook of Set-Theoretic Topology, eds: K. Kunen and J. Vaughan, North-Holland, 1984, pp.425-501.
MR 0776629 |
Zbl 0794.54034
[9] Künzi H.P.A., Romaguera S.:
Quasi-metric spaces quasi-metric hyperspaces and uniform local compactness. Rend. Ist. Mat. Univ. Trieste, to appear.
MR 1718967
[10] Rice M.D.:
A note on uniform paracompactness. Proc. Amer. Math. Soc. 62 (1977), 359-362.
MR 0436085 |
Zbl 0353.54011
[11] Romaguera S.:
On cofinally complete metric spaces. Questions Answers Gen. Topology 16 (1998), 165-170.
MR 1642068 |
Zbl 0941.54030