[1] Adam D., Felgenhauer A., Roos H.-G., Stynes M.:
A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54 1 (1995), 1-25.
MR 1314953 |
Zbl 0813.65105
[2] Bardos C., LeRoux A.Y., Nedelec J.C.:
First order quasilinear equations with boundary conditions. Comm. in Part. Diff. Equa. 4 (9) (1979), 1017-1034.
MR 0542510
[3] Berger H., Feistauer M.:
Analysis of the finite element variational crimes in the numerical approximation of transonic flow. Math. Comput. 61 204 (1993), 493-521.
MR 1192967 |
Zbl 0786.76051
[4] Ciarlet P.G.:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1979.
MR 0520174 |
Zbl 0547.65072
[5] Feistauer M.:
Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific & Technical, Harlow, 1993.
MR 1266627 |
Zbl 0819.76001
[6] Feistauer M., Felcman J., Dolejší V.: Adaptive finite volume method for the numerical solution of the compressible Euler equations. in: S. Wagner, E.H. Hirschel, J. Périaux and R. Piva, Eds., {Computational Fluid Dynamics 94}, Vol. 2, Proc. of the Second European CFD Conference (John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1994), pp. 894-901.
[7] Feistauer M., Felcman J., Lukáčová-Medviďová M.:
Combined finite element-finite volume solution of compressible flow. Journal of Comput. and Appl. Math. 63 (1995), 179-199.
MR 1365559
[8] Feistauer M., Felcman J., Lukáčová-Medviďová M.:
On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. Num. Methods for Part. Diff. Eqs. 13 (1997), 1-28.
MR 1436613
[9] Feistauer M., Knobloch P.: Operator splitting method for compressible Euler and NavierStokes equations. Proc. of Internat. Workshop on Numerical Methods for the Navier-Stokes Equations, Heidelberg 1993, {Notes on Numerical Fluid Mechanics}, Vieweg, BraunschweigWiesbaden.
[10] Felcman J.: Finite volume solution of inviscid compressible fluid flow. ZAMM 71 (1991), 665-668.
[11] Göhner U., Warnecke G.:
A shock indicator for adaptive transonic flow computations. Num. Math. 66 (1994), 423-448.
MR 1254397
[12] Göhner U., Warnecke G.:
A second order finite difference error indicator for adaptive transonic flow computations. Num. Math. 70 (1995), 129-161.
MR 1324735
[13] Ikeda T.:
Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena. Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1983.
MR 0683102 |
Zbl 0508.65049
[14] Lukáčová-Medviďová M.: Numerical Solution of Compressible Flow. PhD Thesis, Fac. of Math. and Physics, Charles Univ., Prague, 1994.
[15] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure Valued Solutions to Evolutionary Partial Differential Equations. Applied Mathematics and Mathematical Computation 13, London, Chapman & Hall, 1996.
[16] Ohmori K., Ushijima T.:
A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO Numer. Anal. 18 (1984), 309-322.
MR 0751761 |
Zbl 0586.65080
[17] Risch U.:
An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty$-norm. M$^{2}$AN 24 (1990), 235-264.
MR 1052149
[18] Schieweck F., Tobiska L.:
A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation. M$^{2}$AN 23 (1989), 627-647.
MR 1025076 |
Zbl 0681.76032
[20] Tobiska L.:
Full and weighted upwind finite element methods. in: Splines in Numerical Analysis (Mathematical Research Volume 52, J.W. Schmidt, H. Späth - eds.), Akademie-Verlag, Berlin, 1989.
MR 1004263 |
Zbl 0685.65074
[21] Vijayasundaram G.:
Transonic flow simulation using an upstream centered scheme of Godunov in finite elements. J. Comp. Phys. 63 (1986), 416-433.
MR 0835825