Article
Keywords:
Helmholtz equation; set of determination; decomposition of $L^1$
Summary:
Let $\alpha > 0$, $\lambda = (2\alpha)^{-1/2}$, $S^{n-1}$ be the $(n-1)$-dimensional unit sphere, $\sigma$ be the surface measure on $S^{n-1}$ and $h(x) = \int_{S^{n-1}} e^{\lambda\langle x,y\rangle }\,d\sigma(y)$. We characterize all subsets $M$ of $\Bbb R^n $ such that $$ \inf\limits_{x\in \Bbb R^n}{u(x)\over h(x)} = \inf\limits_{x\in M}{u(x)\over h(x)} $$ for every positive solution $u$ of the Helmholtz equation on $\Bbb R^n$. A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $ e^{\lambda\langle x_k,.\rangle }/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.
References:
[1] Aikawa H.:
Sets of determination for harmonic functions in an NTA domains. J. Math. Soc. Japan, to appear.
MR 1376083
[2] Bauer H.:
Harmonische Räume und ihre Potentialtheorie. Springer-Verlag Berlin-Heidelberg-New York (1966).
MR 0210916 |
Zbl 0142.38402
[3] Bonsall F.F.:
Decomposition of functions as sums of elementary functions. Quart J. Math. Oxford (2) 37 (1986), 129-136.
MR 0841422
[4] Bonsall F.F.:
Domination of the supremum of a bounded harmonic function by its supremum over a countable subset. Proc. Edinburgh Math. Soc. 30 (1987), 441-477.
MR 0908454 |
Zbl 0658.31001
[5] Bonsall F.F.:
Some dual aspects of the Poisson kernel. Proc. Edinburgh Math. Soc. 33 (1990), 207-232.
MR 1057750 |
Zbl 0704.31001
[6] Caffarelli L.A., Littman W.:
Representation formulas for solutions to $\Delta u - u = 0$ in $\Bbb R^n$. Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982).
MR 0716508
[7] Gardiner S.J.:
Sets of determination for harmonic function. Trans. Amer. Math. Soc. 338 (1993), 233-243.
MR 1100694
[8] Korányi A.:
A survey of harmonic functions on symmetric spaces. Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344.
MR 0545272
[9] Korányi A., Taylor J.C.:
Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation. Illinois J. Math. 27.1 (1983), 77-93.
MR 0684542
[10] Ranošová J.:
Sets of determination for parabolic functions on a half-space. Comment. Math. Univ. Carolinae 35 (1994), 497-513.
MR 1307276
[11] Ranošová J.:
Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness. Comment. Math. Univ. Carolinae 37 (1996), 707-723.
MR 1440703 |
Zbl 0887.35064
[13] Taylor J.C.:
An elementary proof of the theorem of Fatou-Naïm-Doob. 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163.
MR 0670103 |
Zbl 0551.31004
[14] Watson G.N.:
Theory of Bessel functions. 2nd ed., Cambridge Univ. Press Cambridge (1944).
MR 0010746 |
Zbl 0063.08184