Previous |  Up |  Next

Article

Keywords:
Lebesgue integral; Denjoy-Perron integral; variational measure
Summary:
We discuss variations of functions that provide conceptually similar descriptive definitions of the Lebesgue and Denjoy-Perron integrals.
References:
[1] Bongiorno B., Pfeffer W.F., Thomson B.S.: A full descriptive definition of the gage integral. Canadian Math. Bull., in press. MR 1426684 | Zbl 0885.26008
[2] Bongiorno B., Di Piazza L., Skvortsov V.: A new full descriptive characterization of Denjoy-Perron integral. to appear. Zbl 0879.26026
[3] Buczolich Z., Pfeffer W.F.: Variations of additive functions. Czechoslovak Math. J., in press. MR 1461431 | Zbl 0903.26004
[4] Engelking R.: General Topology. PWN, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[5] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Amer. Math. Soc., Providence, 1994. MR 1288751 | Zbl 0807.26004
[6] Henstock R.: A Riemann type integral of Lebesgue power. Canadian J. Math. 20 (1968), 79-87. MR 0219675 | Zbl 0171.01804
[7] Howard E.J.: Analyticity of almost everywhere differentiable functions. Proc. Amer. Math. Soc. 110 (1990), 745-753. MR 1027093 | Zbl 0705.30001
[8] Kurzweil J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 82 (1957), 418-446. MR 0111875 | Zbl 0090.30002
[9] Kurzweil J., Jarník J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138-151. MR 1146639
[10] McShane E.J.: A unified theory of integration. Amer. Math. Monthly 80 (1973), 349-359. MR 0318434 | Zbl 0266.26008
[11] Novikov A., Pfeffer W.F.: An invariant Riemann type integral defined by figures. Proc. Amer. Math. Soc. 120 (1994), 849-853. MR 1182703
[12] Pfeffer W.F.: The Riemann Approach to Integration. Cambridge Univ. Press, New York, 1993. MR 1268404 | Zbl 1143.26005
[13] Pfeffer W.F.: Lectures on geometric integration and the divergence theorem. Rend. Mat. Univ. Trieste 23 (1991), 263-314. MR 1248655 | Zbl 0789.26007
[14] Rudin W.: Real and Complex Analysis. McGraw-Hill, New York, 1987. MR 0924157 | Zbl 1038.00002
[15] Thomson B.S.: Derivatives of Interval Functions. Mem. Amer. Math. Soc., #452, Providence, 1991. MR 1078198
Partner of
EuDML logo