Previous |  Up |  Next

Article

Keywords:
Carathéodory upper semicontinuous; random (stochastic) topological degree; Souslin family; measurable space
Summary:
The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk's odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega,x)$ where $L:\text{\it dom}\kern 1.3pt L\subset X\to Z$ is a linear Fredholm mapping of index zero and $N:\Omega\times \overline{G}\to 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.
References:
[1] Akashi W.Y.: Equivalence theorems and coincidence degree for multivalued mappings. Osaka J. Math. 25.1 (1988), 33-47. MR 0937185
[2] Berge C.: Espaces Topologiques. Dunod, Paris (1959). MR 0105663 | Zbl 0088.14703
[3] Engelking R.: General Topology. Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). MR 1039321 | Zbl 0684.54001
[4] Engl H.: Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351-360. MR 0500323 | Zbl 0355.47035
[5] Fan K.: Fixed points and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. MR 0047317
[6] Friedman A.: Partial Differential Equations. Holt, Rinehart, Winston, New York (1969). MR 0445088 | Zbl 0224.35002
[7] Gaines R.E., Mawhin J.L.: Coincidence degree and nonlinear differential equations. Springer-Verlag Lecture Notes No. 568 (1977). MR 0637067 | Zbl 0339.47031
[8] Gaines R.E., Peterson J.K.: Periodic solutions to differential inclusions. Nonlinear Analysis 5 (1981), 1109-1131. MR 0636724 | Zbl 0475.34023
[9] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag New York (1983). MR 0737190 | Zbl 0562.35001
[10] Glicksberg I.: A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174. MR 0046638
[11] Himmelberg C.J.: Measurable relations. Fund. Math. 87 (1975), 53-72. MR 0367142 | Zbl 0296.28003
[12] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. 13 (1965), 781-786. MR 0196178 | Zbl 0151.10703
[13] Lloyd N.G.: Degree Theory. Cambridge University Press (1978). MR 0493564 | Zbl 0367.47001
[14] Ma T.W.: Topological degree for set valued compact vector fields in locally convex spaces. Dissertationes Math. 92 (1972), 1-43.
[15] Mawhin J.: Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. MR 0328703 | Zbl 0244.47049
[16] Nowak A.: Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Pol. Acad. Sci. 34 (1986), 487-494. MR 0874895 | Zbl 0617.60059
[17] Nussbaum R.D.: The fixed point index and fixed point theorems for $k$-set contractions. Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.
[18] Nussbaum R.D.: The fixed point index for condensing maps. Ann. Mat. Pura. Appl. 89 (1971), 217-258. MR 0312341
[19] Petryshyn W.V., Fitzpatrick P.M.: A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings. Trans. Amer. Math. Soc. 194 (1974), 1-25. MR 2478129 | Zbl 0297.47049
[20] Pruszko T.: A Coincidence degree for $L$-compact convex-valued mappings and its applications to the Picard problem for orientor fields. Bull. Acad. Pol. Sci. 27 (1979), 895-902. MR 0616183
[21] T. Pruszko: Topological degree methods in multivalued boundary value problems. Nonlinear Analysis 5 (1981), 959-973. MR 0633011
[22] Robertson A.P.: On measurable selections. Proc. R.S.E. (A) 72 (1972/73), 1-7. MR 0399398
[23] Rogers C.A.: Hausdorff Measures. Cambridge University Press (1970). MR 0281862 | Zbl 0204.37601
[24] Sadowski B.W.: Limit-compact and condensing operators. Russian Math. Surveys 27 (1972), 85-155. MR 0428132
[25] Saint-Beuve M.F.: On the existence of von Neumann-Aumann's theorem. J. Functional Analysis 17 (1974), 112-129. MR 0374364
[26] Saks S.: Theory of the Integral. Dover, New York (1968). MR 0167578
[27] Tan K.K., Yuan X.Z.: On deterministic and random fixed points. Proc. Amer. Math. Soc. 119 849-856 (1993). MR 1169051 | Zbl 0801.47044
[28] Tarafdar E., Teo S.K.: On the existence of solutions of the equation $Lx \in Nx$ and a coincidence degree theory. J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. MR 0550958 | Zbl 0431.47038
[29] Tarafdar E., Thompson H.B.: On the solvability of nonlinear noncompact operator equations. J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. MR 0886808 | Zbl 0623.47072
[30] Tarafdar E., Watson P., Yuan X.Z.: Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points. Nonlinear Analysis, T.M.A. (in press), 1996.
[31] Wagner D.H.: Survey of measurable selection theorems. SIAM J. Control. Optim. 15 859-903 (1977). MR 0486391 | Zbl 0407.28006
Partner of
EuDML logo