[1] Akashi W.Y.:
Equivalence theorems and coincidence degree for multivalued mappings. Osaka J. Math. 25.1 (1988), 33-47.
MR 0937185
[3] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989).
MR 1039321 |
Zbl 0684.54001
[4] Engl H.:
Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351-360.
MR 0500323 |
Zbl 0355.47035
[5] Fan K.:
Fixed points and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
MR 0047317
[7] Gaines R.E., Mawhin J.L.:
Coincidence degree and nonlinear differential equations. Springer-Verlag Lecture Notes No. 568 (1977).
MR 0637067 |
Zbl 0339.47031
[8] Gaines R.E., Peterson J.K.:
Periodic solutions to differential inclusions. Nonlinear Analysis 5 (1981), 1109-1131.
MR 0636724 |
Zbl 0475.34023
[9] Gilbarg D., Trudinger N.S.:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag New York (1983).
MR 0737190 |
Zbl 0562.35001
[10] Glicksberg I.:
A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174.
MR 0046638
[12] Lasota A., Opial Z.:
An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. 13 (1965), 781-786.
MR 0196178 |
Zbl 0151.10703
[14] Ma T.W.: Topological degree for set valued compact vector fields in locally convex spaces. Dissertationes Math. 92 (1972), 1-43.
[15] Mawhin J.:
Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636.
MR 0328703 |
Zbl 0244.47049
[16] Nowak A.:
Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Pol. Acad. Sci. 34 (1986), 487-494.
MR 0874895 |
Zbl 0617.60059
[17] Nussbaum R.D.: The fixed point index and fixed point theorems for $k$-set contractions. Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.
[18] Nussbaum R.D.:
The fixed point index for condensing maps. Ann. Mat. Pura. Appl. 89 (1971), 217-258.
MR 0312341
[19] Petryshyn W.V., Fitzpatrick P.M.:
A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings. Trans. Amer. Math. Soc. 194 (1974), 1-25.
MR 2478129 |
Zbl 0297.47049
[20] Pruszko T.:
A Coincidence degree for $L$-compact convex-valued mappings and its applications to the Picard problem for orientor fields. Bull. Acad. Pol. Sci. 27 (1979), 895-902.
MR 0616183
[21] T. Pruszko:
Topological degree methods in multivalued boundary value problems. Nonlinear Analysis 5 (1981), 959-973.
MR 0633011
[22] Robertson A.P.:
On measurable selections. Proc. R.S.E. (A) 72 (1972/73), 1-7.
MR 0399398
[24] Sadowski B.W.:
Limit-compact and condensing operators. Russian Math. Surveys 27 (1972), 85-155.
MR 0428132
[25] Saint-Beuve M.F.:
On the existence of von Neumann-Aumann's theorem. J. Functional Analysis 17 (1974), 112-129.
MR 0374364
[26] Saks S.:
Theory of the Integral. Dover, New York (1968).
MR 0167578
[27] Tan K.K., Yuan X.Z.:
On deterministic and random fixed points. Proc. Amer. Math. Soc. 119 849-856 (1993).
MR 1169051 |
Zbl 0801.47044
[28] Tarafdar E., Teo S.K.:
On the existence of solutions of the equation $Lx \in Nx$ and a coincidence degree theory. J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173.
MR 0550958 |
Zbl 0431.47038
[29] Tarafdar E., Thompson H.B.:
On the solvability of nonlinear noncompact operator equations. J. Austral. Math. Soc. Ser. A 43 (1987), 103-126.
MR 0886808 |
Zbl 0623.47072
[30] Tarafdar E., Watson P., Yuan X.Z.: Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points. Nonlinear Analysis, T.M.A. (in press), 1996.
[31] Wagner D.H.:
Survey of measurable selection theorems. SIAM J. Control. Optim. 15 859-903 (1977).
MR 0486391 |
Zbl 0407.28006