Previous |  Up |  Next

Article

Keywords:
paracompactness (full normality); uniform locales; metrizability
Summary:
We present a direct constructive proof of full normality for a class of spaces (locales) that includes, among others, all metrizable ones.
References:
[1] Isbell J.R.: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. MR 0358725 | Zbl 0246.54028
[2] Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[3] Kelley J.L.: General Topology. Van Nostrand, Princeton, 1955. MR 0070144 | Zbl 0518.54001
[4] Pultr A.: Notes on an extension of the structure of frame. Discrete Mathematics 108 (1992), 107-114. MR 1189833 | Zbl 0759.06011
[5] Pultr A.: Pointless uniformities I. Complete regularity. Comment. Math. Univ. Carolinae 25 (1984), 91-104. MR 0749118 | Zbl 0543.54023
[6] Pultr A.: Pointless uniformities II. (Dia)metrization. Comment. Math. Univ. Carolinae 25 (1984), 105-120. MR 0749119
[7] Pultr A.: Remarks on metrizable locales. Proc. 12th Winter School, Suppl. ai Rend. Circ. Mat. Palermo (2) 6 (1984), 247-258. MR 0782722 | Zbl 0565.54001
[8] Pultr A., Úlehla J.: Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30.2 (1989), 377-384. MR 1014137
[9] Stone A.H.: Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982. MR 0026802 | Zbl 0032.31403
[10] Sun Shu-Hao: On paracompact locales and metric locales. Comment. Math. Univ. Carolinae 30 (1989), 101-107. MR 0995708
[11] Tukey J.W.: Convergence and uniformity in topology. Ann. of Math. Studies 2 (1940). MR 0002515 | Zbl 0025.09102
Partner of
EuDML logo