Previous |  Up |  Next

Article

Keywords:
set valued functions; set valued measures; Pettis-Aumann integral
Summary:
The extension theorem of bounded, weakly compact, convex set valued and weakly countably additive measures is established through a discussion of convexity, compactness and existence of selection of the set valued measures; meanwhile, a characterization is obtained for continuous, weakly compact and convex set valued measures which can be represented by Pettis-Aumann-type integral.
References:
[1] Aumann R.: Integrals of set-valued functions. J. Math. Appl. Anal. 12 (1965), 1-12. MR 0185073 | Zbl 0163.06301
[2] Artstein Z.: Set-valued measures. Trans. Amer. Math. Soc. 165 (1972), 103-125. MR 0293054 | Zbl 0237.28008
[3] Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces. Ann. Math. 88 (1968), 35-46. MR 0228983 | Zbl 0164.14903
[4] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. 580, Springer-Verlag, 1977. MR 0467310 | Zbl 0346.46038
[5] Diestel J., Uhl J.: Vector Measures. Amer. Math. Soc., no. 15, 1977. MR 0453964 | Zbl 0521.46035
[6] Hiai F., Umegaki H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149-182. MR 0507504 | Zbl 0368.60006
[7] Hiai F.: Radon-Nikodym theorems for set-valued measures. J. Multivariate Anal. 8 (1978), 96-118. MR 0583862 | Zbl 0384.28006
[8] Ionescu-Tulcea A., Ionescu-Tulcea C.: Topics in the Theory of Lifting. Springer-Verlag, Berlin, 1969. Zbl 0179.46303
[9] Papageorgiou N.: On the theory of Banach space valued multifunctions. J. Multivariate Anal. 17 (1985), 185-227. MR 0808276 | Zbl 0579.28010
[10] Papageorgiou N.: Representation of set-valued operators. Trans. Amer. Math. Soc. 292 (1985), 557-572. MR 0808737 | Zbl 0605.46037
[11] Papageorgiou N.: Contributions to the theory of set-valued functions and set-valued measures. Trans. Amer. Math. Soc. 304 (1987), 245-265. MR 0906815 | Zbl 0634.28004
[12] Uhl J.: The range of vector-valued measure. Proc. Amer. Math. Soc 23 (1969), 158-163. MR 0264029
[13] Wilansky A.: Modern Methods in Topological Vector Spaces. McGraw-Hill Inc., 1978. MR 0518316 | Zbl 0395.46001
Partner of
EuDML logo