Previous |  Up |  Next

Article

Keywords:
spaces of vector measures and vector functions; complementability; Banach lattices; preduals of W$^\ast$-algebras; quotient spaces
Summary:
In the paper [5] L. Drewnowski and the author proved that if $X$ is a Banach space containing a copy of $c_0$ then $L_1({\mu },X)$ is {\it not} complemented in $cabv({\mu },X)$ and conjectured that the same result is true if $X$ is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if $\mu$ is a finite measure and $X$ is a Banach lattice not containing copies of $c_0$, then $L_1({\mu },X)$ is complemented in $cabv({\mu },X)$. Here, we show that the complementability of $L_1({\mu },X)$ in $cabv({\mu },X)$ together with that one of $X$ in the bidual $X^{\ast\ast}$ is equivalent to the complementability of $L_1({\mu },X)$ in its bidual, so obtaining that for certain families of Banach spaces not containing $c_0$ complementability occurs (Section 2), thanks to the existence of general results stating that a space in one of those families is complemented in the bidual. We shall also prove that certain quotient spaces inherit that property (Section 3).
References:
[1] Bourgain J., Pisier G.: A construction of ${\Cal L}_\infty$-spaces and related Banach spaces. Bol. Soc. Bras. Mat. 14.2 (1983), 109-123. MR 0756904
[2] Cambern M., Greim P.: The dual of a space of vector measures. Math. Z. 180 (1982), 373-378. MR 0664522 | Zbl 0471.46016
[3] Dinculeanu N.: Vector Measures. Pergamon Press, New York, 1967. MR 0206190 | Zbl 0647.60062
[4] Diestel J., Uhl J.J., Jr.: Vector Measures. Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. MR 0453964 | Zbl 0521.46035
[5] Drewnowski L., Emmanuele G.: The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$. Studia Math. 104.2 (1993), 111-123. MR 1211812
[6] Dunford N., Schwartz J.T.: Linear Operators, part I. Intersciences, New York and London, 1958. MR 0117523 | Zbl 0635.47001
[7] Freniche F., Rodriguez-Piazza L.: Linear projections from a space of measures onto its Bochner integrable functions subspace. preprint, 1993.
[8] Ghoussoub N., Rosenthal H.P.: Martingales, $G_\delta$-embeddings and quotients of $L_1$. Math. Annalen 264 (1983), 321-332. MR 0714107 | Zbl 0511.46017
[9] Halmos P.R.: Measure Theory. GTM 18, Springer Verlag, New York, Berlin, Heidelberg, 1974. Zbl 0283.28001
[10] Harmand P., Werner D., Werner W.: M-ideals in Banach spaces and Banach algebras. LNM 1547, Springer Verlag, New York, Berlin, Heidelberg, 1994. MR 1238713 | Zbl 0789.46011
[11] Johnson J.: Remarks on Banach spaces of compact operators. J. Funct. Analysis 32.3 (1979), 304-311. MR 0538857 | Zbl 0412.47024
[12] Kwapien S.: On Banach spaces containing $c_0$. Studia Math. 52 (1974), 187-188. MR 0356156 | Zbl 0295.60003
[13] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces, II, Function Spaces. EMG 97, Springer Verlag, New York, Berlin, Heidelberg, 1979. MR 0540367 | Zbl 0403.46022
[14] Lohman R.H.: A note on Banach spaces containing $l_1$. Canad. Math. Bull. 19 (1976), 365-367. MR 0430748
[15] Musial K.: Martingales of Pettis integrable functions. in Measure Theory, Oberwolfach 1979, LNM 794, Springer Verlag, New York, Berlin, Heidelberg 1980. MR 0577981 | Zbl 0433.28010
[16] Pelczynski A.: Banach spaces of Analytic Functions and Absolutely Summing Operators. CBMS 30, Amer. Math. Soc., Providence, Rhode Island, 1977. MR 0511811 | Zbl 0475.46022
[17] Rao T.S.S.R.K.: $L^1(\lambda,E)$ as a constrained subspace of its bidual. Indian Statistical Institute, Tech. Report, 1988.
[18] Rao T.S.S.R.K., Roy A.K., Sundaresan K.: Intersection properties of balls in tensor products of some Banach spaces. Math. Scand. 65 (1989), 103-118. MR 1051827 | Zbl 0675.46007
[19] Rao T.S.S.R.K.: A note on the $R_{n,k}$ property for $L_1(\mu)$. Canad. Math. Bull. 32 (1989), 74-77. MR 0996125
[20] Rao T.S.S.R.K.: Intersection properties of balls in tensor products of some Banach spaces - II. Indian J. Pure Appl. Math. 21 (1990), 275-284. MR 1044265 | Zbl 0706.46019
[21] Sakai S.: C$^\ast$-Algebras and W$^\ast$-Algebras. EMG 60, Springer Verlag, 1971. MR 0442701 | Zbl 1153.37316
[22] Schaefer H.H.: Banach lattices and positive operators. GMW 215, Springer Verlag, New York, Berlin, Heidelberg, 1974. MR 0423039 | Zbl 0296.47023
[23] Sundaresan K.: Banach lattices of Lebesgue-Bochner function spaces and conditional expectation operators, I. Bull. Acad. Sinica 2.2 (1974), 165-184. MR 0355584 | Zbl 0307.46025
[24] Takesaki M.: Theory of operator algebras, I. Springer Verlag, 1979. MR 0548728 | Zbl 0990.46034
[25] Caselles V.: A characterization of weakly sequentially complete Banach lattices. Math. Z. 190 (1985), 379-385. MR 0806896 | Zbl 0587.46019
Partner of
EuDML logo