Previous |  Up |  Next

Article

Keywords:
elliptic equations; Wiener criterion; nonlinear potentials; measure data
Summary:
Let $u$ be a weak solution of a quasilinear elliptic equation of the growth $p$ with a measure right hand term $\mu$. We estimate $u(z)$ at an interior point $z$ of the domain $\Omega$, or an irregular boundary point $z\in \partial\Omega$, in terms of a norm of $u$, a nonlinear potential of $\mu$ and the Wiener integral of $\bold R^n\setminus \Omega$. This quantifies the result on necessity of the Wiener criterion.
References:
[1] Adams D.R.: $L^p$ potential theory techniques and nonlinear PDE. In: Potential Theory (Ed. M. Kishi) Walter de Gruyter & Co Berlin (1992), 1-15. MR 1167217 | Zbl 0760.22013
[2] Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory. Springer Verlag Berlin (1995). MR 1411441 | Zbl 0834.46021
[3] Adams D.R., Meyers N.G.: Thinness and Wiener criteria for non-linear potentials. Indiana Univ. Math. J. 22 (1972), 169-197. MR 0316724 | Zbl 0244.31012
[4] Brelot M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Math. 175, Springer ({1971}). MR 0281940 | Zbl 0222.31014
[5] Federer H., Ziemer W.P.: The Lebesgue set of a function whose partial derivatives are $p$-th power summable. Indiana Univ. Math. J. 22 (1972), 139-158. MR 0435361
[6] Frehse J.: Capacity methods in the theory of partial differential equations. Jahresber. Deutsch. Math. Verein. 84 (1982), 1-44. MR 0644068 | Zbl 0486.35002
[7] Fuglede B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier Grenoble 21.1 (1971), 123-169. MR 0283158 | Zbl 0197.19401
[8] Gariepy R., Ziemer W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Rat. Mech. Anal. 67 (1977), 25-39. MR 0492836 | Zbl 0389.35023
[9] Hedberg L.I.: Nonlinear potentials and approximation in the mean by analytic functions. Math. Z. 129 (1972), 299-319. MR 0328088
[10] Hedberg L.I., Wolff Th.H.: Thin sets in nonlinear potential theory. Ann. Inst. Fourier 33.4 (1983), 161-187. MR 0727526 | Zbl 0508.31008
[11] Heinonen J., Kilpeläinen T.: On the Wiener criterion and quasilinear obstacle problems. Trans. Amer. Math. Soc. 310 (1988), 239-255. MR 0965751
[12] Heinonen J., Kilpeläinen T., Martio O.: Fine topology and quasilinear elliptic equations. Ann. Inst. Fourier 39.2 (1989), 293-318. MR 1017281
[13] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993). MR 1207810
[14] Kilpeläinen T., Malý J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Scuola Norm. Sup. Pisa. Cl. Science, Ser. IV 19 (1992), 591-613. MR 1205885
[15] Kilpeläinen T., Malý J.: Supersolutions to degenerate elliptic equations on quasi open sets. Comm. Partial Differential Equations 17 (1992), 371-405. MR 1163430
[16] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137-161. MR 1264000
[17] Lieberman G.M.: Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations with right hand side a measure. Comm. Partial Differential Equations 18 (1993), 1991-2112. MR 1233190
[18] Lindqvist P., Martio O.: Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155 (1985), 153-171. MR 0806413 | Zbl 0607.35042
[19] Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa. Serie III 17 (1963), 43-77. MR 0161019 | Zbl 0116.30302
[20] Malý J.: Nonlinear potentials and quasilinear PDE's. Proceedings of the International Conference on Potential Theory, Kouty, 1994, to appear. MR 1404703 | Zbl 0857.35046
[21] Maz'ya V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations (Russian). Vestnik Leningrad. Univ. 25 42-55 English translation Vestnik Leningrad. Univ. Math. 3 (1976), 225-242. MR 0274948
[22] Maz'ya V.G., Khavin V.P.: Nonlinear potential theory (Russian). Uspekhi Mat. Nauk 27.6 (1972), 67-138 English translation Russian Math. Surveys 27 (1972), 71-148.
[23] Malý J., Ziemer W.P.: Fine Regularity of Solutions of Elliptic Equations. book in preparation.
[24] Meyers N.G.: Continuity properties of potentials. Duke Math. J. 42 (1975), 157-166. MR 0367235 | Zbl 0334.31004
[25] Rakotoson J.M., Ziemer W.P.: Local behavior of solutions of quasilinear elliptic equations with general structure. Trans. Amer. Math. Soc. 319 (1990), 747-764. MR 0998128 | Zbl 0708.35023
[26] Skrypnik I.V.: Nonlinear Elliptic Boundary Value Problems. Teubner Verlag, Leipzig (1986). MR 0915342 | Zbl 0617.35001
[27] Trudinger N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721-747. MR 0226198 | Zbl 0153.42703
[28] Wiener N.: Certain notions in potential theory. J. Math. Phys. 3 (1924), 24-5 Reprinted in: Norbert Wiener: Collected works. Vol. 1 (1976), MIT Press, pp. 364-391. MR 0532698
Partner of
EuDML logo