Previous |  Up |  Next

Article

Title: A generic theorem in the theory of cardinal invariants of topological spaces (English)
Author: Arhangel'skii, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 303-325
.
Category: math
.
Summary: Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed. (English)
Keyword: Lindelöf space
Keyword: Souslin number
Keyword: spread
Keyword: extent
Keyword: pseudocharacter
Keyword: relative cardinal invariant
MSC: 54A25
MSC: 54D20
idZBL: Zbl 0837.54005
idMR: MR1357532
.
Date available: 2009-01-08T18:18:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118759
.
Reference: [1] Arhangel'skii A.V.: On the cardinality of bicompacta satisfying the first axiom of countability.Soviet Math. Dokl. 10 (1969), 951-955. MR 0119188
Reference: [2] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33-96. MR 0526012
Reference: [3] Arhangel'skii A.V.: Theorems on the cardinality of families of sets in compact Hausdorff spaces.Soviet Math. Dokl. 17:1 (1976), 213-217. MR 0405327
Reference: [4] Arhangel'skii A.V.: A theorem on cardinality.Russ. Math. Surveys 34:4 (1979), 153-154. MR 0548421
Reference: [5] Arhangel'skii A.V., Hamdi M.M. Genedi: The beginnings of the Theory of Relative Topological Properties.p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian).
Reference: [6] Arhangel'skii A.V.: $C_p$-Theory.in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992. Zbl 0932.54015
Reference: [7] Arhangel'skii V.A.: Relative compactness and networks.Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian).
Reference: [8] Bell M., Ginsburg J., Woods G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number.Pacific J. Math. 79 (1978), 37-45. MR 0526665
Reference: [9] Burke D.K., Hodel R.E.: The number of compact subsets of a topological space.Proc. Amer. Math. Soc. 58 (1976), 363-368. Zbl 0335.54005, MR 0418014
Reference: [10] Charlesworth A.: On the cardinality of a topological space.Proc. Amer. Math. Soc. 66 (1977), 138-142. Zbl 0364.54004, MR 0451184
Reference: [11] Corson H.H., Michael E.: Metrization of certain countable unions.Illinois J. Math. 8 (1964), 351-360. MR 0170324
Reference: [12] Dow A., Vermeer J.: An example concerning the property of a space being Lindelöf in another.Topology and Appl. 51 (1993), 255-260. Zbl 0827.54014, MR 1237391
Reference: [13] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321
Reference: [14] Fedorchuk V.V.: On the cardinality of hereditarily separable compact Hausdorff spaces.Soviet Math. Dokl. 16 (1975), 651-655. Zbl 0331.54029
Reference: [15] Ginsburg J., Woods G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Amer. Math. Soc. 64 (1977), 357-360. Zbl 0398.54002, MR 0461407
Reference: [16] Grothendieck A.: Criteres de compacticite dans les espaces fonctionnels genereaux.Amer. J. Math. 74 (1952), 168-186. MR 0047313
Reference: [17] Gryzlow A.A.: Two theorems on the cardinality of topological spaces.Soviet Math. Dokl. 21 (1980), 506-509.
Reference: [18] Hajnal A., Juhász I.: Discrete subspaces of topological spaces.Indag. Math. 29 (1967), 343-356. MR 0229195
Reference: [19] Hodel R.E.: A technique for proving inequalities in cardinal functions.Topology Proc. 4 (1979), 115-120. MR 0583694
Reference: [20] Hodel R.E.: Cardinal Functions, 1.in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984. MR 0776620
Reference: [21] Hodel R.E.: Combinatorial set theory and cardinal function inequalities.Proc. Amer. Math. Soc. 111:2 (1991), 567-575. Zbl 0713.54007, MR 1039531
Reference: [22] Mischenko A.: Spaces with point countable bases.Soviet Math. Dokl. 3 (1962), 855-858.
Reference: [23] Pol R.: Short proofs of two theorems on cardinality of topological spaces.Bull. Acad. Polon. Sci. 22 (1974), 1245-1249. Zbl 0295.54004, MR 0383333
Reference: [24] Ranchin D.V.: On compactness modulo an ideal.Dokl. AN SSSR 202 (1972), 761-764 (in Russian). MR 0296899
Reference: [25] Shapirovskij B.E.: On discrete subspaces of topological spaces; weight, tightness and Souslin number.Soviet Math. Dokl. 13 (1972), 215-219.
Reference: [26] Shapirovskij B.E.: Canonical sets and character. Density and weight in compact spaces.Soviet Math. Dokl. 15 (1974), 1282-1287. Zbl 0306.54012
Reference: [27] Stephenson R.M., Jr.: Initially $\kappa $-compact and related spaces.in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984. Zbl 0588.54025, MR 0776632
Reference: [28] van Douwen Eric K.: Applications of maximal topologies.Topol. and Appl. 51:2 (1993), 125-139. Zbl 0845.54028, MR 1229708
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_11.pdf 328.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo