Article
Keywords:
stochastic operators; quasi-compact
Summary:
We show that a stochastic operator acting on the Banach lattice $L^1(m)$ of all $m$-integrable functions on $(X,\,\Cal A)$ is quasi-compact if and only if it is uniformly smoothing (see the definition below).
References:
[B1] Bartoszek W.:
On quasi-compactness and invariant measures of Markov operators on $C(X)$. Bull. Acad. Polon. Sci. 34 (1986), 69-72.
MR 0850316 |
Zbl 0614.47030
[B2] Bartoszek W.:
Asymptotic periodicity of the iterates of positive contractions on Banach lattices. Studia Math. XCI (1988), 179-188.
MR 0985720
[B3] Bartoszek W.: On the asymptotic behaviour of iterates of positive linear operators. Die Suid-Afrikaanse Wiskundevereniging Mededelings 25:1 (1993), 48-78.
[K] Komorník J.:
Asymptotic decomposition of smoothing positive operators. Acta Universitatis Carolinae (1989), 30:2 77-81.
MR 1046450
[KL] Komorník J., Lasota A.:
Asymptotic decomposition of Markov operators. Bull. Acad. Polon. Sci. 35 no. 5-6 (1987), 321-327.
MR 0919219
[LM] Lasota A., Mackey M.C.:
Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge, 1985.
MR 0832868 |
Zbl 0606.58002